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Knots, Polynomials, and Categorification

Jacob Rasmussen

Abstract. These lectures give an introduction to knot polynomials and their cat-
egorifications. Topics covered include the Jones and Alexander polynomials,
Khovanov homology of links and tangles, HOMFLY-PT homology, and the Λk-
colored HOMFLY-PT polynomial.
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1. Prelude: Knots and the Jones polynomial

1.1. Knots

Definition 1.1.1. An oriented knot in R3 is a smooth embedding K : S1 ↪→ R3.
We say that two knots K0,K1 : S1 ↪→ R3 are isotopic if there is a smooth map
Φ : S1 × [0, 1]→ R3 such that Kt := Φ|S1×t is a knot for each t.

We declare two knots to be equivalent if they are isotopic, and leave it to the
reader to check that isotopy is indeed an equivalence relation. Since any two
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orientation preserving homeomorphisms of S1 are isotopic, the equivalence class
of knot is determined by its oriented image in R3.

To draw pictures of a knot, we consider its image under a linear projection
π : R3 → R2. We say that the image is generic if 1) π ◦ K : S1 → R2 is an
immersion, and 2) π ◦K is injective except at transverse double points, which we
refer to as crossings. By a small isotopy, we may arrange that the image of K under
any given projection π is generic.

Figure 1.1.2. A crossing

Let us identify the image of the projection π with the xy plane in R3. If π is
generic, the isotopy class of K is determined by the image π ◦ K together with
the relative z-coordinate of the two strands near each double point. The strand
with the larger z-coordinate is an overcrossing, while the strand with the smaller
z-coordinate is an undercrossing.

We record this information by briefly picking up our pen near each undercross-
ing, as shown in the figure. The resulting picture is a planar diagram of the knot
K. Here are some examples:

Unknot Trefoil T Pretzel knot P(−3, 5, 7)

Figure 1.1.3. Examples of Knots

We declare two planar diagrams to be equivalent if there is an orientation
preserving homeomorphism of the plane which carries one to the other. For
example, any crossingless planar diagram is equivalent to the standard diagram
of the unknot shown above. (This seemingly obvious fact is far from trivial — it
is the 2-dimensional Schoenflies theorem.)

Note that any given knot will have many inequivalent planar diagrams. For
example, the first three diagrams in Figure 1.1.4 all represent the unknot.
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Figure 1.1.4. One of these knots is not like the others.

Definition 1.1.5. Planar diagrams D1 and D2 are related by a Reidemeister move if
there are embeddings ϕ1,ϕ2 : B2 ↪→ R2 such that

1) D1 ∩ (R2 −ϕ1(B
2)) = D2 ∩ (R2 −ϕ2(B

2))

2) ϕ−1
1 (D1) and ϕ−1

2 (D2) are one of the three pairs of diagrams shown in
Figure 1.1.6.

R1

R2

R3

Figure 1.1.6. Reidemeister moves

The reader should convince themselves that diagrams related by a Reidemeis-
ter move are indeed isotopic. For example, R1 corresponds to giving a strand of
the diagram a half twist; R2 to sliding one strand of the diagram over another,
and R3 to sliding a crossing under a strand. As a handy mnemonic, note that the
number of the move is equal to the number of distinct strands involved in it.

Theorem 1.1.7 (Reidemeister). If two planar diagrams represent the same knot, they
are related by a sequence of Reidemeister moves.



Jacob Rasmussen 5

1.2. Generalizations One way to generalize Definition 1.1.1 is to change the do-
main of the embedding.

Definition 1.2.1. We define an oriented n-component link in R3 to be a smooth
embedding qnS1 → R3. Two such links L0 and L1 are isotopic if there is a
smooth map Φ : (qnS1)× [0, 1] → R3 such that Lt := Φ(qnS1)×t is a link for all
t ∈ [0, 1].

A few examples are shown in Figure 1.2.2.

Unlink Hopf link Borromean rings

Figure 1.2.2. Examples of Links

Links have planar diagrams just like knots do, and satisfy an analog of The-
orem 1.1.7. We can also vary the target of the embedding. If Y is a smooth
3-manifold, an oriented knot in Y is a smooth embedding K : S1 ↪→ Y. Viewing
S3 as the one-point compactification of R3, we see that every knot in R3 gives
rise to a knot in S3. Conversely, if K is a knot in S3 and p is a point, it’s easy to
see that K is isotopic to a knot which does not contain p. Hence every knot in S3

arises in this way. Similarly, if two knots are isotopic in S3, they are isotopic in R3.
(The trace of the isotopy is 2-dimensional, so the isotopy can itself be isotoped to
avoid p.) In summary, there is a natural bijection between the set of knots in R3

and the set of knots in S3.

1.3. New knots from old

Definition 1.3.1. If K ↪→ R3 is a knot, its mirror knot K is ρ(K), where ρ : R3 → R3

is an orientation reversing homeomorphism.

Note that any two such ρ are isotopic, so it doesn’t matter which one we pick.
Taking r to be reflection in the xy-plane, we see that if D is a diagram of K,
the diagram D obtained by switching all overcrossings for undercrossings is a
diagram of K.

Definition 1.3.2. Choose orientation preserving embeddings i1, i2 : R3 → R3

whose images are disjoint balls in R3. If L1 and L2 are oriented links in R3, their
disjoint union is the union of i1(L1) and i2(L2).

All orientation preserving embeddings R3 → R3 are isotopic, so again, the
exact choice of the maps i1 and i2 is irrelevant.
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Finally, we describe the connected sum operation. If K1,K2

are knots in S3, choose balls B1,B2 ⊂ S3 such that Bi ∩ Ki
is a single unknotted arc as shown in the figure to the right.
Let Yi = S3 \ int(Bi). The orientation on Ki ∩ Bi induces an
orientation on Ki ∩ ∂Bi; one of the two points is positively
oriented, the other negatively. Let ϕ : ∂B1 → ∂B2 be reflection in the vertical
direction of the figure (so ϕ(K1 ∩B1) = K2 ∩B2, but with the orientation reversed.)

Square Knot T#T Granny Knot T#T

Figure 1.3.3. Connected sums

Definition 1.3.4. The connected sum K1#K2 is the knot obtained by taking

(K1 ∩ Y1)∪ϕ (K2 ∩ Y2) ⊂ Y1 ∪ϕ Y2 = S3

and smoothing.

Again, this definition does not depend on the exact choice of the balls B1

and B2. Note that it does depend on the orientation on K1 and K2 (just as with
connected sum of manifolds). If we want to take the connected sum of two links,
we must specify the components we are summing along.

1.4. The Jones polynomial It would be nice to have some way of telling when
two diagrams represent different links. For example, we’d like to be able to say
that the rightmost diagram in Figure 1.1.4 is not the unknot. Our experience
with shoelaces and electrical cables suggests that this is the case, but how can we
prove it?

One approach is suggested by Theorem 1.1.7. Let D be the set of all link
diagrams up to isotopy, let K the set of all links in R3, and let X be some other
set. If we can define a function I : D→ X such that I(D) = I(D ′) whenever D and
D ′ are related by a Reidemeister move, I will descend to a function I : K→ X. In
other words, I is a link invariant.

We can define a link invariant with the help of the Kauffman bracket, which is a
function 〈 · 〉 : D→ Z[A±1,B] satisfying the local relations

1)
〈 〉

= A−1 〈 〉
+A

〈 〉
2) 〈 〉 = B〈 〉

together with the normalization 〈∅〉 = 1, where ∅ denotes the empty diagram.
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Relation 1) should be interpreted in the following way: if we have any three
planar diagrams which agree outside of a disk B2 ⊂ R2 and whose intersections
with B2 are the three diagrams shown, then their brackets satisfy the relation. For
example, applying this relation to the upper crossing in our diagram of the Hopf
link gives

= A−1 + A

Applying the same relation to the lower crossing, we get

+A−2

=

+

+A2

Applying the second relation, which allows us to remove a crossingless circle,
we get

= A−2B2 + 2B+A2B2

The procedure above can be applied to any planar diagram D. By turning our
heads, we can arrange that any unoriented crossing in D looks like the one on
the left-hand side of relation 1). Hence by applying relation 1) repeatedly, we can
reduce 〈D〉 to a sum of terms involving the brackets of planar diagrams with no
crossings, which can then be simplified using relation 2).

0 1

We can formalize this a bit by saying that each crossing has
two resolutions, which we call the 0 resolution and 1 resolution,
as shown in the figure to the right. If D has n crossings, there
will be 2n ways to resolve all n, and these 2n diagrams are in
bijection with the vertices of the n-dimensional cube [0, 1]n. If
Dv denotes the crossingless planar diagram at vertex v, then

(1.4.1) 〈D〉 =
∑

v
An−2|v|B|Dv|

where |v| denotes the sum of the coefficients of v, and |Dv| denotes the number of
components of Dv. To summarize, we have the following

Lemma 1.4.2. There is a unique function 〈 · 〉 : D → Z[A±1,B] satisfying the local
relations
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1)
〈 〉

= A−1 〈 〉
+A

〈 〉
2) 〈 〉 = B〈 〉
3) 〈∅〉 = 1.

Proof. We’ve shown above that relations 1)-3) imply that 〈D〉 is given by equa-
tion (1.4.1). Conversely, if D is any planar diagram, we may define 〈D〉 by equa-
tion (1.4.1). It is then easy to see that D satisfies relations 1) and 2). �

Next, we consider how the bracket changes under Reidemeister moves. Skip-
ping over R1 for the moment, we consider the effect of the R2 move. We compute

= A−1 + A

= A−2 + + + A−2

= + (A2 +A−2 +B)

and see that in order for the bracket to be invariant under R2, we must set

B = −A−2 −A2.

Although this is sufficient to ensure invariance under the R2 move, it’s not very
promising. We still have two Reidemeister moves to go, and have already elim-
inated one of our two variables. Nevertheless, we press on and consider the R3
move.

At first, it seems like we’ll have to resolve three crossings, resulting in eight
different diagrams and a very messy calculation. In fact, since we’ve already
proved that the bracket is invariant under R2, it’s enough to resolve one:

= A−1 + A =

= A−1 + A

= A−1 + A

It follows that the bracket is invariant under the R3 move without any further
specialization. It remains only to consider the R1 move. We compute
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= A−1 + A = −A−3

= A−1 + A = −A3

Disappointingly, the we find that the bracket is not invariant under the R1
move, and hence not a link invariant. But it’s very close — close enough, in fact,
that there is a fix for our problem.

+ -

Figure 1.4.3. Positive and negative crossings

The Fix: So far, we have been thinking about unoriented link diagrams. If we
pay attention to the orientations, it is no longer true that every crossing looks like
the one in Figure 1.1.2. Instead there are two possible types, which we refer to
as positive and negative crossing. These are shown in the figure above. If D is a
planar diagram, we write n±(D) for the number of positive/ negative crossings
of D, and define the writhe of D to be

w(D) = n+(D) −n−(D).

Lemma 1.4.4. The writhe is invariant under Reidemeister moves 2 and 3.

Proof. The two additional crossings in the right-hand diagram for R2 will always
have opposite signs, no matter how we orient the strands. Hence the net change
to the writhe is 0. For the R3 move, consider the figure below:

a

b

c

c

b

a

The crossings labelled a will have the same sign on both sides of the figure,
regardless of the orientation of the strands. Similarly for the crossings b and c, so
the writhe will be the same. �

On the other hand, an R1 move will either increase or decrease the writhe by
1. We can use this to counteract the change in the Kauffman bracket under an R1
move.

Definition 1.4.5. If D is an oriented link diagram, we define its unreduced Jones
polynomial to be

V(D) = (−A3)−w(D)〈D〉.



10 Knots, Polynomials, and Categorification

Theorem 1.4.6. The unreduced Jones polynomial is an invariant of oriented links.

Proof. We have already seen that both the writhe and the bracket are invariant
under R2 and R3, so V(D) is invariant under R2 and R3. If D and D ′ are the
left and right-hand figures in the diagram of the R1 move in Figure 1.1.6, then
w(D ′) = w(D) + 1 and 〈D ′〉 = −A3〈D ′〉. It follows that V(D ′) = V(D). �

Example 1.4.7. With this definition, we have V(∅) = 1, where
∅ denotes the empty link, and V( ) = −A−2 − A2. More
generally, V( n) = (−A−2 −A2)n, where n denotes the n-
component unlink. If H+ is the positively oriented Hopf link
(shown to the right), we have already computed that

〈H+〉 = B(A−2B+ 2+A2B) = (−A−2 −A2)(−A−4 −A4) = A−6 +A−2 +A2 +A6,

so

V(H+) = A
−12 +A−8 +A−4 + 1.

We deduce that the Hopf link is not the unlink.

Normalizations If D is a nonempty link diagram, then every complete resolu-
tion Dv will have at least one component. It follows that every term of the sum
in equation (1.4.1) is divisible by B = V( ), so V(D) is divisible by V( ).

Definition 1.4.8. A nonempty link L has a reduced Jones polynomial V(L) given by

V(L) = V(L)/V( ).

Example 1.4.9. Let T be the positive trefoil knot, as shown in Figure 1.1.3. We
compute the bracket as in the figure above.

= A−1 + A

= A−1(−A−3)2B+AB(−A−4 −A4)

= (A−7 −A−3 −A5)B

Since w(D) = 3, we get V(T) = −A−16 +A−12 +A−4. We conclude that the trefoil
is not the unknot.

Although the variable A is most natural for the Kauffman bracket, when we
work with the Jones polynomial, we will generally use the variable

q = −A−2.

We have V( n) = (q+ q−1)n, V(H+) = q+ q5, and V(T) = q2 + q6 − q8 in this
normalization. When we want to emphasize the variable being used, we put the
link in the subscript, writing VL(q) for what we previously denoted by V(L).
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As the examples above suggest, VL(q) ∈ Z[q±1] for any link L, although a
priori we might expect to see terms involving (−q)1/2. One way to prove this is
via the following

Proposition 1.4.10. The Jones polynomial satisfies the oriented skein relation

q2V
( )

− q−2V
( )

= (q− q−1)V
( )

.

As usual, this is to be interpreted as a local relation. For example, applying
the skein relation to a crossing in our standard diagram for the trefoil gives

q2V( ) − q−2V(T) = (q− q−1)V(H+).

1.5. Connections and Further Reading The Kauffman bracket was introduced
in a classic paper by Kauffman [37], which is well worth reading. This paper also
contains an important early application of the Jones polynomial which we have
not discussed: it gives a lower bound on the crossing number of a link.

Theorem 1.5.1. Let M(L) and m(L) be the maximum and minimum degrees of the
Laurent polynomial VL(q). If D is any planar diagram representing L, then

2c(D) >M(L) −m(L).

If D is reduced and alternating then equality holds. In contrast, if D is non-alternating,
then the inequality is strict.

D1 D2
Here a diagram D is reduced if it does not contain

a crossing of the form shown in the figure below. D

is alternating if crossings alternate between over and under as we traverse any
component. For example, the diagrams of the trefoil and Borromean rings in
Figures 1.1.3 and 1.2.2 are both alternating, while the pretzel knot P(−3, 5, 7) is
not.

Theorem 1.5.1 resolved one of the oldest open problems in knot theory, due to
Peter Guthrie Tait:

Corollary 1.5.2 (First Tait Conjecture). Let D be a reduced alternating diagram. If D ′

is any other diagram representing the same link, then c(D) 6 c(D ′).

In particular, a reduced alternating diagram with > 0 crossings is always knot-
ted.

Our strategy of checking invariance under the Reidemeister moves is an effec-
tive way of proving that some quantity is a link invariant, but it is a terrible way
of finding such invariants to start with. The definition of the Jones polynomial we
have given is completely elementary, but remained undiscovered for 100 years af-
ter mathematicians first started thinking about knots. Jones arrived at hs original
definition [36] by thinking about something entirely different — representations
of von Neumann algebras. We’ll return to the representation-theoretic approach
in lecture 4, when we talk about the HOMFLY-PT polynomial.
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After Jones’s discovery, Witten realized that the Jones polynomial should fit
into a much broader theory of invariants of 3-manifolds defined using Chern-
Simons theory. His paper [83] launched an entire industry devoted to the study
of these quantum invariants, both in physics and mathematics. We’ll discuss these
more general invariants in lecture 6, but for now it is worth knowing that Witten’s
approach assigns a polynomial invariant of knots to each complex Lie algebra g

equipped with a representation V ; the Jones polynomial corresponds to the vector
representation of sl2.

Exercises

1. If K is a knot in S3, show that H1(S
3 − K) = Z and that H∗(S3 − K) = 0

for ∗ > 1. More generally, if L ⊂ S3 is an n-component link, show that
H1(S

3 − L) = Zn.
2. Suppose K ⊂ R3 , and let f : K → R be projection on the z-coordinate.

Show that if f has a single local maximum on K, then K is unknotted.
Deduce that any knot diagram may be unknotted by a sequence of cross-
ing changes, in which we replace by while leaving the rest of the
diagram unchanged.

3. Suppose D is an oriented 2-component link diagram, and let n∗±(D) be
the number of positive/negative crossings in which the two strands be-
long to different components of L. Show that the linking number lk(D)

defined by setting lk(D) = 1
2 [n
∗
+(D) −n∗−(D)] is invariant under all three

Reidemeister moves, and hence an invariant of L.
4. Suppose that L is as in the previous exercise, and that L1 and L2 are its

components. If S ⊂ R3 is an oriented embedded surface with ∂S = L1,
show that lk(L) is the intersection number L2 · S

5. Show that VL(q) = VL(q
−1). Deduce that T and T are not equivalent.

6. Show that V(K1#K2) = V(K1)V(K2). Deduce that the square knot T#T and
the granny knot T#T are not equivalent.

7. Use the Kauffman bracket to compute the Jones polynomial of the (2,n)
torus knots and of the figure-eight knot, which are shown below. (For
something harder, but still doable by hand, try computing V(P(−3, 5, 7).)

8. Prove the skein relation of Proposition 1.4.10. Deduce that VL(1) = 2n,
where n is the number of components of L.

(n crossings)

T(2,n) Figure-eight
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2. The Alexander Polynomial

In this lecture, we’ll discuss another polynomial invariant of knots, known
as the Alexander polynomial. This polynomial is much older than the Jones
polynomial, and there’s a good reason it was discovered first. It can be derived
from a standard invariant of algebraic topology — the fundamental group.

2.1. The knot group If K is a knot in S3, we let MK = S3 −K be its complement.

Lemma 2.1.1. If K0 and K1 are isotopic knots in S3, then their complements MK0 and
MK1 are orientation preserving homeomorphic.

Proof. (Sketch) If Ψ : S1 × [0, 1] → S3 is the isotopy, then we can define a time-
dependent vector field vt on the image Ψ(S1, t) by

vt|Ψ(θ,t) = dΨ

(
∂

∂t
|(θ,t)

)
.

We can extend vt to a time-dependent vector field vt on all of S3. This is best
done by thinking of vt as a vector field on the embedded cylinder

{(Ψ(θ, t), t) | (θ, t) ∈ S1 × [0, 1]} ⊂ S3 × [0, 1].

If ψt : S3 → S3 is the flow defined by vt, then ψ1 : S3 → S3 is an orientation-
preserving diffeomorphism satisfying ψ1(K0) = K1. �

As a consequence, any topological invariant of the knot complement MK is an
invariant of K. The most obvious one to try is the ordinary homology H∗(MK),
but this turns out not to be so useful as an invariant: H1(MK) ' Z for every knot
K, and H∗(MK) = 0 for ∗ > 1. (Lecture 0, Exercise 1). In contrast, π1(MK) turns
out to be a much better invariant. We sketch a method for computing it from a
diagram D of K.

Definition 2.1.2. If D is an oriented planar diagram, an arc of D is a segment
of D between two undercrossings. The Wirtinger presentation associated to D has
generators ai, where i ∈ {arcs of D} and relations wc, where c ∈ {crossings of D}.
Here we take our basepoint ∗ to lie above the plane of the paper, and ai to be a
loop which runs down from the basepoint, around arc i, and then back up to the
basepoint, as shown in the figure on the left below. The orientation of the loop ai
and the arc i should should satisfy the right-hand rule as shown. The relations
wc associated to positive and negative crossings are shown in the two figures on
the right.

i

ai

i

k

j

i

j

i k

i
aj = aiaka

−1
i aj = a

−1
i akai
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The reader should take a moment to convince her/himself that these relations
hold, as illustrated in the figure. Of course, we should really prove that the ai
generate π1(MK), and that there are no more relations. One approach to this
(sketched in the exercises) is to find a handle decomposition of S3 − ν(K).

Example 2.1.3. If we use the standard diagram of the trefoil shown
to the right, the Wirtinger presentation is

π1(MT ) = 〈a1,a2,a3 |a1 = a−1
3 a2a3,a3 = a−1

2 a1a2,a2 = a−1
1 a3a1〉.

which we rewrite as

π1(MT ) = 〈a,b, c |a = c−1bc, c = b−1ab,b = a−1ca〉.

We can eliminate c using the second relation; when we do so,
both new relations we get are equivalent to the single relation
abab−1a−1b−1 = 1. Hence

π1(MT ) = 〈a,b |abab−1a−1b−1 = 1〉.

1 3
2

Remark 2.1.4. The simplest topological space with this fundamental group is the
finite cell complex consisting of a single 0-cell, two 1-cells a and b, and a single
2-cell attached along the curve abab−1a−1b−1. In fact, S3 − ν(T) has a handle
decomposition consisting of a single 0-handle e0, two 1-handles a and b, and
a 2-handle f2 attached to the one-skeleton along the word abab−1a−1b−1. The
proof is sketched in the exercises.

If K and K are mirror knots, then S3 − K is (orientation-reversing) homeomor-
phic to S3 − K. Hence π1(MK) ' π1(MK), and the fundamental group does not
distinguish between mirrors. This seemingly trivial example can be leveraged to
give less trivial ones by using connected sums. For example, the complements
of T#T and T#T are not homeomorphic, but they have isomorphic fundamental
groups.

However, this is essentially the only way in which things can go wrong. If K
is a prime knot in S3 (that is, it cannot be decomposed as a nontrivial connected
sum) and π1(S

3 − K) ' π1(S
3 − K ′), then it can be shown that either K ′ = K or

K ′ = K [26,82]. This is a deep result that combines Waldhausen’s work on Haken
manifolds [23] with Gordon and Luecke’s theorem [26] that knots are determined
by their complements.

2.2. The infinite cyclic cover The knot group is a very powerful invariant, but it
can be hard to tell whether two finitely presented groups are isomorphic. What
we’d like is some invariant of a group which can be derived from a presentation,
but is easy to compute. The most obvious such invariant is the abelianization.
For example, if we abelianize the presentation of G = π1(MT ) given above, we
see that

Gab = [a,b |a+ b+ a− b− a− b = 0] = [a,b |a = b] ' Z
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where we’ve used the square brackets to indicate we’re writing a presentation of
an abelian group. Of course this is no surprise; the abelianization of π1(MK) is
H1(MK) ' Z, as you computed in the exercises for section 1.

This may seem like a dead end, but in fact it leads somewhere interesting. Let

| · | : π1(MK)→ H1(MK) ' Z = 〈t〉

be the abelianization map. Corresponding to the diagram

ker | · | π1(MK)

H1(MK)

MK

MK

there is a regular covering map| · | p

where π1(MK) = ker | · |.

Definition 2.2.1. The covering space MK is the infinite cyclic cover of MK.

The group of deck transformations is H1(MK) = Z, which we take to be gen-
erated by ϕ :MK →MK.

Example 2.2.2. Consider the handle decomposition of S3 − ν(T) described in Re-
mark 2.1.4. The preimages of the handles under p give a handle decomposition
of MK. We build this decomposition up one dimension at a time.

Dimension 0: The preimage of the 0-handle e0 is an infinite disjoint union of
0-handles tkẽ0, k ∈ Z. The deck transformation ϕ acts by ϕ(tkẽ0) = t

k+1ẽ0.

ẽ0 tẽ0 t2ẽ0 t3ẽ0

Dimension 1: Let ã be the lift of a whose foot lies on ẽ0. The head of ã will lie
on |a|ẽ0 = tẽ0. All the other lifts of ã will be orbits of this lift under the action of
the deck group. The lifts of b can be described similarly.

b̃ tb̃ t2b̃

ã tã t2ã

Dimension 2: The attaching circle of the 2-handle f2 traces out a path given by
the word abab−1a−1b−1, one of whose lifts is shown in the figure below. The
attaching circle of the 2-handle f̃2 runs along this lift. All the other lifts (not
shown) are orbits of this one under the action of the deck group.
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b̃ tb̃ t2b̃

ã tã t2ã

2.3. The Alexander polynomial Now we consider the group H1(MK; Q). The
deck group acts on this group via t · x = ϕ∗(x). Extending linearly, we get an
action of the rational group ring R = Q[Z] = Q[t±1] on H1(MK; Q). In other
words, H1(MK; Q) is an R-module. By the structure theorem for finitely generated
modules over a PID, we know that H1(MK; Q) ' Rk ⊕ R/(p1) ⊕ . . .R/(pn) for
some p1, . . .pn ∈ R.

Lemma 2.3.1. H1(MK; Q) is a torsion module over R; i.e. k = 0.

Proof. The chain complex C∗(MK; Q) is free over R. If we define N1 = R/(t− 1),
then we have

C∗(MK; Q)⊗RN1 ' C∗(S3 −K; Q).

Since R is a PID, we can apply the universal coefficient theorem to see that

H1(MK) = H1(MK; Q)⊗RN1
⊕

TorR(H0(MK; Q),N1).

MK is connected, so H0(MK; Q) ' Q, and if x ∈ H0(MK; Q), ϕ∗(x) = x. We
conclude that H0(MK; Q) ' N1 as an R-module, so TorR(H0(MK; Q),N1) ' N1

has dimension 1 over Q. On the other hand, we know that H1(MK; Q) ' Q, so
we must have H1(MK; Q)⊗RN1 = 0. It follows that H1(MK; Q) is torsion. �

If N is a finitely-generated torsion module over a PID R, then we can write
N = R/(α1) ⊕ . . .R/(αn).Although this decomposition is not unique, the order
ordN := α1 . . .αn is well defined up to multiplication by units in R. To indicate
this ambiguity, we write ordN ∼ p(t), rather than ordN = p(t).

If R = Z, so N is a finitely generated abelian group, this definition reduces
to the usual notion of the order of a group. Many well-known properties of the
order of a group extend to the general situation. Two which we will use are

1) The order is multiplicative. If N1 ⊂ N2, we define [N2 : N1] ∼ ordN2/N1.
Then if N1 ⊂ N2 ⊂ N2, we have [N3 : N1] ∼ [N3 : N2][N2 : N1].

2) A matrix A ∈ Mn×n(R) defines a map A : Rn → Rn for which we have
ord cokerA ∼ [Rn : imA] ∼ detA.

Definition 2.3.2. The Alexander polynomial of a knot K in S3 is defined to be
∆K(t) ∼ ordH1(MK; Q).

A priori, ∆K(t) is well-defined up to multiplication by units in R; i.e. up to
multiplication by ctk, where c ∈ Q. In fact, as we describe in the next section, this
ambiguity can be eliminated to give a well-defined polynomial ∆K(t) ∈ Z[t±1].
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We remark that in contrast to the Jones polynomial, which we defined using a
diagram of K, and thus requires the fact that K ⊂ S3, the definition of ∆K(t) only
depended on π1(S

3 −K). Hence it extends without change to knots in a homology
sphere, and (with a little more work) to knots in an arbitrary 3-manifold Y.

Example 2.3.3. From the handle decomposition in Example 2.2.2, we see that
Ccell∗ (MT ; Q) has the form:

Ccell2 (MT ) Ccell1 (MT ) Ccell0 (MT )

〈f̃2〉 〈ã, b̃〉 〈ẽ0〉

d2 d1

[
1 + t2 − t

t− t2 − 1

] [
t− 1 t− 1

]

We see that kerd1 = 〈ã − b̃〉, while imd2 = 〈(1 − t + t2)(ã − b̃)〉 . Hence
H1(MT ) = R/(t

2 − t+ 1), and ∆(T) ∼ t2 − t+ 1.

2.4. Fox calculus The procedure in Examples 2.2.2 and 2.3.3 can be applied to
any group presentation. To be specific, suppose

G = 〈a1, . . .am |w1, . . .wn〉

is a finitely generated group, and let F be the free group generated by the ai. We
can build a 2-dimensional cell complex X with π1(X) ' G by starting with a 0-cell
e0, attaching one 1-cell for each generator ai, and then attaching one 2-cell along
the loop corresponding to each word wi.

Definition 2.4.1. The Fox derivative (or free derivative) di : F → Z[F] is the unique
map satisfying the following properties:

1) diaj = δij
2) di(ww ′) = diw+ [w]diw

′

The first property says that di behaves like partial derivative with respect to
ai, but the “Leibniz rule” is a bit funny.

In order for the definition to make sense, we must check that there is a unique
map di satisfying these two properties. If 1 ∈ F is the identity element, then
applying the Leibniz rule to the relation 1 ·1 = 1 gives di(1) = 2di(1), so di(1) = 0.
Next, by applying di to the relation 1 = a−1

j aj, we see that

dia
−1
j = −[a−1

j ]diaj = −[a−1
j ]δij.

Since every w ∈ F can be uniquely expressed as a reduced word in the ai’s and
a−1
i ’s, it follows that diw is determined by property 2). For example,

da(ca
−1b−1a2ca−1) = −[ca−1] + [ca−1b−1] + [ca−1b−1a] − [ca−1b−1a2ca−1].

We leave it to the reader to check that for any two reduced words w,w ′ this
definition gives di(ww ′) = diw+ [w]diw

′ .
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The geometric significance of the Fox derivative is as follows. Let G and X be
as above, and suppose ϕ : G → G ′ is a surjective homomorphism. Let X̃ be the
corresponding regular cover with deck group G ′. The attaching circle wj lifts up
to a closed loop w̃j in the 1-skeleton X̃(1).

The cellular chain complex Ccell∗ (X̃) is a free module over the group ring Z[G ′],
generated by lifts of the cells of X. We fix a lift ẽ0 of the 0-cell, and choose lifts
ãi of the 1-cells by requiring that ãi has one foot on ẽ0 and points away from it.
Similarly, we choose w̃j so that it is based at ẽ0.

Lemma 2.4.2. With these choices we have,

[w̃j] =

n∑
i=1

ψ(diwj) · [ãi] ∈ Hcell1 (X̃(1)),

where ψ : Z[F]→ Z[G ′] is induced by the composition of ϕ and the projection F→ G.

Proof. Each appearance of ai in wj will lift to gãi for some g ∈ G ′ and hence
will contribute g · [ãi] to [w̃j] . To determine g, write wj = waiw

′, where we’ve
broken out the appearance of ai we are interested in. Then g = ψ(w), and g · [ãi]
is exactly the term of diwj corresponding to this appearance of ai. Similarly,
an appearance of a−1

i of the form w = wa−1
i w

′ will contribute −ψ(wa−1
i ) · [ãi]

to [w̃j]. �

The complex Ccell∗ (X̃) is a free chain complex over the ring R = Z[G ′]. Using
the lemma, we see that it has the form

Rn
A−→ Rm

B−→ R

where

A = ψ


d1w1 d1w2 · · · d1wn

d2w1 d2w2 · · · d2wn
...

. . .
...

dmw1 dmw2 · · · dmwn

 and B =
[
ψ(a1) − 1 · · · ψ(am) − 1

]
.

The matrix A is called the Alexander matrix.
We now specialize to the case where G ′ = Z. If our presentation of G comes

from a handle decomposition of the knot complement MK, then n = m− 1, and
X̃ is homotopy equivalent to MK. In this case, we let Ai be Alexander matrix
with its ith row deleted, so Ai is a square matrix.

Proposition 2.4.3. detAi ∼
(
ψ(ai) − 1
t− 1

)
∆K(t).

Proof. Let bi = ψ(ai) − 1 be the ith entry of B, and write b = gcd{b1, . . .bn+1}.
Since ψ(ai)’s generate Z = 〈t〉, b = t− 1. If πi : Rn+1 → Rn is the projection
which forgets the ith coordinate, then

[Rn : πi(kerB)] ∼
bi
b

∼
ψ(ai) − 1
t− 1

.
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By definition, ∆K(t) ∼ ordH1(X̃) ∼ [kerB : imA]. If bi 6= 0, then πi maps kerB
injectively to Rn, so [kerB : imA] = [πi(kerB) : πi(imA)]. We see that

detAi ∼ [Rn : πi(imA)]

∼ [πi(kerB) : πi(imA)][Rn : πi(kerB)]

∼ ∆K(t)
ψ(ai) − 1
t− 1

.

If bi = 0, let Bi be the matrix obtained by deleting the ith entry from B. We
know that d2 = 0 in the cellular chain complex, so BiAi = BA = 0, which implies
that the columns of Ai are linearly dependent. Hence detAi = 0. �

Example 2.4.4. We use the presentation π1(MT ) = 〈a,b, c |ac−1b−1c, cb−1a−1b〉
from Example 2.1.3, and find that the Alexander matrix is

A =


1 −t−1

−t−1 −1 + t−1

−1 + t−1 1

 .

ψ(a) = ψ(b) = ψ(c) = t, so we expect detAi ∼ 1 − t+ t2 for each 2× 2 minor Ai,
as is indeed the case.

The proposition implies that ∆K(t) ∼ gcd detAi. More generally, suppose that
〈a1, . . . ,am |w1, . . . ,wn〉 is a presentation of a group G and ψ : G → Z is a
surjective homomorphism. Then we can form an Alexander matrix Aψ exactly as
we did above.

Theorem 2.4.5. Suppose ψ : G→ Z is as above. Then

∆ψ(G) := gcd {detA ′ψ |A ′ψ is a m− 1×m− 1 minor of Aψ} ∈ Z[Z] = Z[t±1]

is an invariant of the pair (G,ψ) which is well-defined up to multiplication by units
in Z[t±1].

Sketch of proof: see [17]. A Tietze move is one of the following operations on a
group presentation:

1) Duplicating a relation.
2) Multiplying one relation by another.
3) Conjugating a relation by a generator.
4) Adding a new generator a ′ together with the relation a ′ = 1.

Any two presentations of G are related by a sequence of Tietze moves, and one
checks directly that the gcd does not change under each of the moves. �

The theorem implies that ∆K(t) is both well-defined up to multiplication by
±tk (k ∈ Z) and an invariant of π1(MK).

2.5. Fibred knots We say that a 3-manifold Y fibres over S1 if there is a submer-
sion f : Y → S1. If this is the case, all of the fibres f−1(p) are diffeomorphic to
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some surface Σ, there is a diffeomorphism ϕ : Σ → Σ called the monodromy, and
Y ' Σ× [0, 1]/ ∼, where (x, 1) ∼ (ϕ(x), 0).

Suppose Y is connected, and let θ be a generator of H1(S1). We leave it as an
exercise to show that the fibre Σ is connected if only if f∗(θ) is a primitive element
of H1(Y). If f∗(θ) is divisible by n, then there is a lift f̃ as shown

S1

Y S1

z 7→znf̃

f

and f̃ is a submersion with connected fibre. From now on, we will only consider
fibrations of this form.

We say that a knot K is fibred if MK fibres over S1.

Example 2.5.1. Identify S3 with the set {(z,w) ∈ C2 | |z|2 + |w|2 = 1}. If p and q are
relatively prime, the (p,q) torus knot is the set

T(p,q) = {(z,w) ∈ S3 | zp = wq}.

The map f :MT(p,q) → S1 given by

f(z,w) =
zp −wq

|zp −wq|

is a submersion, and T(p,q) is a fibred knot.

If K is fibred, we can write MK ' Σ× [0, 1]/ ∼, where (ϕ(x), 1) ∼ (x, 0). Con-
sider the map Φ : Σ×R → Σ×R given by Φ(x, t) = (ϕ(x), t+ 1). Φ generates
a free, properly discontinous action of Z on Σ×R. The set Σ× [0, 1] is a funda-
mental domain for the action of Φ, so (Σ×R)/〈Φ〉 ' Σ× [0, 1]/ ∼ ' MK. The
quotient map p : Σ×R → MK is a covering map with deck group Z. The cor-
responding homomorphism π1(MK) → Z must be the abelianization map, since
since any such map factors through H1(MK) ' Z. Hence p is the infinite cyclic
cover. To summarize, we have proved

Proposition 2.5.2. If MK fibres over S1 with monodromy ϕ : Σ → Σ, then MK '
Σ×R. The action of the deck group is generated by the map (x, t)→ (ϕ(x), t+ 1).

Corollary 2.5.3. If MK fibres over S1 with monodromy ϕ : Σ→ Σ, then

∆K(t) ∼ det(tI−ϕ∗)

where ϕ∗ : H1(Σ)→ H1(Σ) is the homomorphism induced by the monodromy.

Proof. For the isomorphism H1(MK) ' H1(Σ), the map Φ∗ : H1(MK) → H1(MK)

is given by ϕ∗ : H1(Σ)→ H1(Σ). Hence if e1, . . . e2g is a basis for H1(Σ) over Z, the
Z[t±1]-module H1(MK) will be generated by the ei, with relations tei = ϕ∗(ei).
In other words, H1(MK) has a square presentation matrix of the form tI−ϕ∗. �

Corollary 2.5.4. If K is a fibred knot, then ∆K(t) is a monic polynomial of degree 2g,
where g is the genus of the fibre.
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The condition of the corollary provides an effective (but not perfect) obstruc-
tion to a knot being fibred: a knot of 10 or fewer crossings, is fibred if and only if
its Alexander polynomial is monic. More generally, alternating knots are fibred
if and only if they have monic Alexander polynomial [57].

2.6. The Seifert genus

Definition 2.6.1. Let K be a knot in S3. A Seifert surface for K is an embedded,
orientable, connected surface Σ ↪→ S3 with ∂Σ = K.

Equivalently, we may think of a Seifert surface as being a connected orientable
surface Σ with one boundary component that is properly embedded in S3 − ν(K)

and whose homology class generates H2(S
3 −ν(K),∂(S3 −ν(K)). (There are many

ways to check the latter condition. Perhaps the easiest is to check that ∂Σ repre-
sents a nonzero class in H1(∂(S

3 − ν(K)).)

The figure above exhibits a Seifert surface for the trefoil knot T . Note that the
surface (being orientable) has two sides, light and dark grey. It is perhaps easiest
to visualize the surface as consisting of two large disks of cloth (0-handles) one
light side up, the other dark, to which we have attached 3 small strips of cloth
(1-handles), one for each crossing. We give each strip half a twist before gluing
its ends to the light and dark disks. The surface deformation retracts to the graph
shown in black, which has Euler characteristic 2-3 = -1. Hence the surface is
homeomorphic to a once-punctured torus.

Lemma 2.6.2. Any K ⊂ S3 has a Seifert surface.

We give two proofs, one constructive, and the other more abstract. Both are
worth knowing.

Proof 1. (Seifert’s algorithm)

Step 1: Orient K, and replace each crossing with its oriented
resolution, as shown in the figure to the right. The resulting
diagram is a collection of oriented circles, known as Seifert
circles. Each circle C in the diagram has a nesting height h(C)
which is equal to the number of other circles one must cross
to get from C to the point at infinity in the diagram.
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0 1

0

Step 1 Step 2

Figure 2.6.3. Seifert’s algorithm applied to the figure-8 knot. The
numbers in the middle figure indicate the nesting heights of the
three Seifert circles. On the right, there are two disks with the
light side up: a large one lying in the plane of the paper, and a
small one above it.

Step 2: Fill in each circle C with a disk parallel to the xy plane at height z = h(C).
If C is oriented clockwise, the dark side of the disk faces up; if it is counterclock-
wise, the light side. Suppose c is a crossing of our original diagram D. Resolve
every crossing other than c and consider the component of the resulting diagram
which contains c. It must be in one of the two configurations below.

When we resolve c, we get either a pair of nested disks with the same color facing
up, or a pair of unnested disks with opposite colors.

Step 3: Attach a 1-handle for each crossing, as shown in the
figure on the right. For visualization purposes, it’s helpful to
think of the one-handle as a band of cloth with light and dark
sides. We give the handle a half twist, and attach it to the disks on either side of
the crossing. In each of the two cases considered above, we can arrange that both
feet of the one-handle are compatible with the colors of the disks they attach to.
Hence the result is an oriented surface. �



Jacob Rasmussen 23

Figure 2.6.4. Seifert surface for the figure-8 knot. The surface
in the top half of the figure consists of a large disk (light side
up) lying in the plane of the paper together with a twisted band
coming out of the paper towards the viewer.

Note that the resulting surface will have χ = n− c, where n is the number of
Seifert circles, and c is the number of crossings.

Proof 2. Let α ∈ Ω1(S3 − ν(K)) be a closed 1-form generating H1(S3 − ν(K); R),
and let β be generator of H1(S

3 − ν(K), Z) ' Z. After scaling α, we may assume
〈[α],β〉 = 1. Fix a basepoint ∗ ∈ S3 − ν(K). There is a well-defined smooth map
f : S3 − K → S1 given by f(x) =

∫
γx
α mod 1, where γx is any path from ∗ to x,

and f∗(dθ) = [α]. If p ∈ S1 is a regular value of f, then f−1(p) is a submanifold of
S3 −ν(K) which is Poincare dual to [α]. Hence f−1(p) is a Seifert surface for K. �

If Σ is a Seifert surface for K, we can find a Seifert surface of higher genus by
taking the connected sum of Σ with a closed surface embedded in S3. On the
other hand, it may not be possible to reduce the genus of Σ. For example, we
have

Lemma 2.6.5. If K ⊂ S3 bounds an embedded disk, then K is unknotted.

Proof. Suppose Φ : D2 → S3 is an embedded disk with Φ(S1) = K. For t ∈ (0, 1],
we define Kt : S1 → S3 by K(θ) = Φ(tθ), so Φ is an isotopy between Kt and
K1. Let T ⊂ R3 be the tangent plane to Φ(D2) at Φ(0), and let π : R3 → T be
orthogonal projection. If D2

ε is the disk of radius ε, the map π ◦Φ : D2
ε → T will

be an embedding for small ε. It follows that Kε is isotopic to the unknot. �

Definition 2.6.6. If K is a knot in S3, its Seifert genus is

g(K) = min{g(Σ) |Σ is a Seifert surface for K}.

For example, the trefoil and figure-8 knot both have Seifert surfaces of genus 1.
Neither is the unknot, so both knots have genus 1.

One of the most important properties of the Alexander polynomial is the fact
that it gives a lower bound on the Seifert genus.

Theorem 2.6.7. (Seifert) 2g(K) > deg∆K(t).
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Proof. Suppose Σ ⊂MK is a Seifert surface with tubular neighborhood ν(Σ), and
let Y = MK − ν(Σ). Y and Σ are orientable, so ν(Σ) = Σ × [−1, 1]. We have
maps ι± : Σ → ∂Y given by the inclusions of Σ× {±1}, and MK ' Y/ ∼, where
ι−(x) ∼ ι+(x).

Lemma 2.6.8. H1(Y) ' Z2g, where g = g(Σ).

Proof. We have

H∗(S3,Σ)

'H∗(S3,ν(Σ))

'H∗(Y,∂Y) by excision

'H3−∗(Y) by Poincaré duality.

The long exact sequence of the pair (S3,Σ) gives

0 = H1(S3)→ H1(Σ)→ H2(S3,Σ)→ H2(S3) = 0

So H1(Y) ' H2(S3,Σ) ' H1(Σ) ' Z2g. �

Returning now to the proof of Theorem 2.6.7, let Z = (Y × Z)/ ∼, where
(ι+(x), t) ∼ (ι−(x), t+ 1). The map p : Z → MK given by p(y, t) = y is a cov-
ering map with deck group Z (generated by the map (x, t) 7→ (x, t + 1)), so
Z ' MK. Finally, we have H1(Z) = H1(Y) ⊗Z[t±1]/ ∼, where the relations ∼

are given by t · ι−∗ (e) = ι+∗ (e) for e ∈ H1(Σ). In other words, H1(Z) ' cokerB,
where B : R2g → R2g is given by B(e) = tι−∗ (e) − ι+∗ (e). The entries of the 2g× 2g
matrix B are linear polynomials in t, so ordH1(Z) = detA is a polynomial in t
with degree 6 2g. �

Corollary 2.6.9. If K is a fibred knot with fibre Σ, then g(K) = g(Σ).

Proof. If Σ is a fibre surface forMK, [Σ] generates H2(MK,∂MK) (exercise). Hence
Σ is a Seifert surface for K. By Corollary 2.5.4, 2g(Σ) = deg∆K(t) 6 2g(K), so
g(Σ) = g(K). �

As with Corollary 2.5.4, the bound of Theorem 2.6.7 is sharp for many knots,
including all alternating knots [16,56] and all knots of 10 crossings or fewer. How-
ever there are many nontrivial knots K with ∆K(t) = 1. (Perhaps the simplest
example is the pretzel knot P(−3, 5, 7) from Figure 1.1.3.) Any such knot has
g(K) > 1, so the inequality of Theorem 2.6.7 is not sharp.

2.7. The Seifert Matrix The maps ι±∗ can be described much more concretely.
Let α : H1(Y)→ H1(Σ) be the isomorphism of Lemma 2.6.8.

Lemma 2.7.1. If y ∈ H1(Σ), then 〈α(x),y〉 = lk(x, ι∗(y)), where ι : Σ → S3 is the
inclusion.

Here lk(a,b) is the linking number of the two-component link aq b, as dis-
cussed in the exercises to section 1.
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Proof. The Poincaré duality isomorphism PD : H1(Y)→ H2(Y,∂Y) satisfies

〈PD(x),S〉 = x · S

for S ∈ H2(Y,∂Y) and the pair of boundary maps δ : H1(Σ) → H2(S3,Σ) and
∂ : H2(S

3,Σ)→ H1(Σ) are dual to each other, so

〈α(x),y〉 = 〈δ−1(PD(x)),y〉 = 〈PD(x),∂−1(y)〉 = x · ∂−1(y)

The class ∂−1(y) is represented by an embedded surface bounding ι∗(y), so we
have x · ∂−1(y) = lk(x, ι∗(y)). �

Choose embedded oriented curves x1, . . . , x2g ⊂ Σwhich form a basis of H1(Σ),
and let x1, . . . x2g be the dual basis of H1(Σ). We define α± : H1(Σ) → H1(Σ) by
α±(x) = α(ι±∗ (x)).

The lemma says that with respect to the bases {x1, . . . , x2g} and {x1, . . . , x2g}, the
map α+ is represented by the 2g× 2g matrix A+ with entries

a+ij = lk(ι+∗ (xj), ι∗(xi)),

while α− is represented by the 2g× 2g matrix A− with entries

a−ij = lk(ι−∗ (xj), ι∗(xi)).

Equivalently, using the bases {x1, . . . , x2g} forH1(Σ) and {α−1(x1), . . . ,α−1(x2g)}

forH1(Y), the maps ι±∗ : H1(Σ)→ H1(Y) are given by the matricesA±. Comparing
with end of the proof of Theorem 2.6.7, we see that

∆K(t) ∼ detB = det(tA− −A+).

The link ι−(xj)∪ ι(xi) is isotopic to ι(xj)∪ ι+(xi), so a−ij = a
+
ji, or equivalently,

A− = (A+)T .

Definition 2.7.2. If Σ is a Seifert surface for K and x1, . . . , x2g ⊂ Σ is a basis of
H1(Σ), the associated Seifert matrix A := A+ is given by

A = [aij] = [lk(ι+∗ (xj), ι∗(xi))].

To sum up, we have proved

Proposition 2.7.3. ∆K(t) ∼ det(A− tAT ), where A is a Seifert matrix of K.

The Seifert matrix lets us pick out a canonical representative for the Alexander
polynomial as an element of Z[t±1].

Definition 2.7.4. The symmetrized Alexander polynomial of a knot K ⊂ S3 is defined
to be

∆K(t) = det(t−1/2A− t1/2AT ),

where A is a Seifert matrix for K.

Proposition 2.7.5. The symmetrized Alexander polynomial satisfies the following prop-
erties:

1) (Integrality) ∆K(t) ∈ Z[t±1].
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2) (Symmetry) ∆K(t−1) = ∆K(t).
3) (Normalization) ∆K(1) = 1.

Proof of Proposition 2.7.5. For item 1), note that A is a 2g× 2g matrix, so

det(t−1/2A− t1/2AT ) = t−g det(A− tAT ).

For 2) note that the expression det(t−1/2A− t1/2AT ) is invariant under the invo-
lution of Z[t±1/2] which sends t1/2 to −t−1/2. The restriction of this involution
to Z[t±1] sends t to t−1.

Finally, for property 3), note that ∆K(1) = det(A−AT ) = det(C), where

cij = lk(ι+∗ (xj), ι∗(xi)) − lk(ι−∗ (xj), ι∗(xi)) = Xj · xi,

where Xj is the annulus xj × [−1, 1] ⊂ Σ× [−1, 1]. On the other hand, it is easy to
see that Xj · xi = xj · xi, where the intersection number on the left is in S3, and
the one on the right is taken in Σ. In other words C is the matrix representing the
intersection form on Σ with respect to the basis x1, . . . x2g. Hence detC = 1. �

Remark 2.7.6. In order for Definition 2.7.4 to make sense, we must check that it
does not depend on the choice of Seifert matrix A. This follows from Proposi-
tion 2.7.5. Indeed, if we are given are two Seifert matrices A1 and A2 for K, let
pi(t) = det(t−1/2Ai − t

1/2ATi ). Then p1(t) and p2(t) are both normalized and
symmetric, and p1(t) ∼ ∆K(t) ∼ p2(t). It is easy to see that this implies p1 = p2.

2.8. Links If L ⊂ S3 is a link, we have H1(S
3 − L) = Z|L|, so there are many

surjective homomorphisms ϕ : π1(S
3 − L)→ Z. Each such homomorphism gives

rise to an infinite cyclic cover Xϕ, and we can define a corresponding Alexander
polynomial ∆ϕ(L) to be the order of H1(Xϕ; Q) as a module over R = Q[t±1].
Note that H1(Xϕ; Q) need not be a torsion module over R; if it is not, its order
∆ϕ(L) is defined to be 0. (With this definition, we still have ordM = detA if A is
a n×n presentation matrix for M.)

If L is an oriented link with n components, the oriented meridians m1, . . . ,mn
form a basis for H1(S

3 − L).

Definition 2.8.1. If L is an oriented link, we define ∆(L) = ∆ϕ(L) where the
homomorphism ϕ : π1(S

3 −L)→ R is given by ϕ(mi) = 1 for all i. Note that if Lr

denotes L with the orientation on each component reversed, the homomorphisms
corresponding to L and Lr have the same kernel, so ∆(L) = ∆(Lr).

Similarly, if L is an oriented link, we define a Seifert surface for L to be an
embedded oriented surface whose oriented boundary is L. With this definition,
the results of section 2.6 carry over more or less unchanged. In particular, if Σ is
a Seifert surface for L, the degree of the (unsymmetrized) Alexander polynomial
∆(L) gives a lower bound on the rank of H1(Σ).

Note that changing the orientation of some (but not all) components of L will
usually have a drastic effect on the Alexander polynomial and Seifert genus; see
Figure 2.8.2 for an example.
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∆(L) = t3/2 − t1/2 + t−1/2 − t−3/2 ∆(L) = 2t1/2 − 2t−1/2

Figure 2.8.2. Minimal genus Seifert surfaces for two different ori-
entations on the torus link T(2, 4). The corresponding Alexander
polynomials are shown.

Finally, we remark that if L is an oriented link, and Σ is a Seifert surface for
L, then the definition of the Seifert matrix given in Definition 2.7.2 still makes
sense. As before, we define the symmetrized Alexander polynomial ∆L(t) to be
det(t−1/2A− t1/2AT ), where A is the Seifert matrix.

We can use the Seifert matrix to prove that the Alexander polynomial satis-
fies a skein relation similar to the oriented skein relation satisfied by the Jones
polynomial.

Proposition 2.8.3. (Skein Relation) ∆
( )

−∆
( )

= (t1/2 − t−1/2)
( )

.

Proof. Let D± and D0 be the three planar diagrams represented by , , and
, and let Σ0 be the Seifert surface for obtained by applying Seifert’s algo-

rithm to D0. The surfaces Σ± that we get by applying Seifert’s algorithm to D±
are the result of attaching one more 1-handle to Σ0.

If we choose a basis x1, . . . , xn for H1(Σ0), we get bases for H1(Σ±) by append-
ing a single curve x±, which runs from a point p in Σ0, over the new 1-handle, and
back to p. Clearly, these satisfy lk(i+∗ (x+), i∗(xi)) = lk(i+∗ (x−), i∗(xi)). Similarly,
the diagrams for the two-component links i+∗ (x+)q i∗(x+) and i+∗ (x−)q i∗(x−)
will be the same except in a neighborhood of the new crossing, where the first di-
agram will have a positive crossing and the second diagram will have a negative
one.

It follows that if A0 is a Seifert matrix for Σ0, the Seifert matrix A± for Σ± will
have the form

A+ =

[
A0 x

y k

]
A− =

[
A0 x

y k− 1

]
.

If B0 = t−1/2A0 − t
1/2AT0 and similarly for B±, we have

B+ =

[
B0 z

w (t−1/2 − t1/2)k

]
B− =

[
B0 z

w (t−1/2 − t1/2)(k− 1)

]
.

Expanding both determinants along the lower row, we see that

detB+ − detB− = (t−1/2 − t1/2)detB0

which gives the skein relation stated above. �
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2.9. Connections and Further Reading The Alexander polynomial of a knot is a
special case of a more general invariant of 3-manifolds the multi-variable Alexan-
der polynomial defined as follows. If Y is a 3-manifold with toroidal bound-
ary, we can consider the covering space Ỹ corresponding to the surjective map
π1(Y) → H1(Y) → H1(Y)/Tors where Tors ⊂ H1(Y) is the torsion subgroup.
If H1(Y) has rank k, H1(Ỹ) is a module over Z[Zk], which is the ring of Lau-
rent polynomials in k variables. This ring is not a PID, but it is a UFD, so
we can use a definition analogous to that of Theorem 2.4.5 to get an invariant
∆(Y) ∈ Z[H1(Y)/Tors]. In the case where Y = S3 − ν(L), the single-variable
Alexander polynomial can be obtained from ∆(Y) by specialization and multi-
plication by an appropriate factor. There are useful analogs of Theorem 2.6.7
and Corollary 2.5.4 which relate the multivariable Alexander polynomial to the
Thurston norm. McMullen’s paper [52] is a good reference.

Closely related to the multivariable Alexander polynomial is the notion of the
Alexander polynomial as a torsion, which was developed in a beautiful paper
by Milnor [54]. A key property of the torsion is that it satisfies a product for-
mula, which relates the torsion of two manifolds glued together along a torus to
the torsion of the individual pieces. This is especially useful for understanding
the effect of Dehn filling and satellite operations on the Alexander polynomial.
Turaev’s book [79] provides a nice introduction to this subject.

Exercises

1. Find a presentation of π1(MK), where K is the figure-8 knot. Show that
it can be reduced to a 2-generator, 1-relator presentation. Compute the
Alexander polynomial using Fox calculus and using the skein relation.

2. Show that S3 − T(p,q) can be written as the union of two solid tori glued
together along an annulus. Deduce that π1(MT(p,q)) = 〈a,b |apbq = 1〉.
Compute ∆(T(p,q)). What is g(T(p,q))?

3. If L is a split link (i.e a disjoint union of two links), show that ∆(L) = 0 by
a) showing that H1(M̃L) is not a torsion module and b) using the skein
relation.

4. If K is a knot in S3, use the fact that H1(MK) = Z to show that ∆K(1) = 1.
5. Use the skein relation to show that ∆K(−1) = VK(−1). The quantity

|∆K(−1)| appears in many contexts, and is known as the determinant of K.
6. Let L be the (2, 2n) torus link, oriented so that it is the boundary of an

embedded annulus, as in the right-hand link in Figure 2.8.2. Compute
∆(L) both by using the skein relation and by finding a Seifert matrix.

7. Let P(p,q, r) be the (p,q, r) pretzel knot, as in Figure 1.1.3, where p,q
and r are all odd. Show that K bounds a genus 1 Seifert surface. Find
the associated Seifert matrix and compute ∆(K). Use this to show that
∆(P(−3, 5, 7)) = 1. Compare this with Exercise 7, section 1), which shows
that P(−3, 5, 7) is not the unknot.
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8. Suppose that Hg is a 3-dimensional handlebody obtained by starting with
a 0-handle and attaching g 1-handles D1 × D2 in an oriented fashion.
Consider the compressing disks 0 ×D2 inside the one-handles, and let
α1, . . . ,αg ⊂ Σg be their boundaries. If β is a curve in Σg, let w be
its image in π1(Hg) = 〈a1, . . . ,ag〉. Explain why there is a bijection be-
tween β ∩ αi and occurrences of a±1

i in the word w. Now suppose that
β1, . . . ,βg are g distinct curves in Σg and consider the set of unordered
g-tuples of points {p1, . . . ,pg}, where pi ∈ αi ∩ βσ(i) for some permuta-
tion σ ∈ Sg.

Show that the elements of this set are in bijection with monomials in
detdiwj, where we expand everything out without cancelling any mono-
mials with opposite signs.

9. We say K is a g-bridge knot if K has a diagram with k maxima for the
z-coordinate. If this is the case, show that S3 − ν(K) can be decomposed
as a handlebody of genus K with k− 1 2-handles attached. (Hint: we can
assume the maxima all occur at z = 1 and the minima at z = −1. Consider
the intersection of K with the half-spaces z > 0 and z 6 0.) Can you draw
the resulting handle decomposition for the complement of the trefoil?

3. Khovanov Homology

In this lecture, we transition from studying polynomial invariants of knots
to their categorifications. Khovanov homology is an invariant of oriented knots
and links in S3. It is a homological generalization of the Jones polynomial in
the following sense: if L ⊂ S3 is an oriented link, its Khovanov homology is a
bigraded abelian group Khi,j(L), whose graded Euler characteristic

χ(Kh(L)) :=
∑
i,j

(−1)iqj dim Khi,j(L) = V(L).

To define Kh(L), we first represent L by a planar diagram D. To such a diagram,
Khovanov assigns a bigraded chain complex CKh(D); Kh(L) is its homology. Kho-
vanov showed that if D1 and D2 are two planar diagrams representing the same
link L, CKh(D1) and CKh(D2) are chain homotopy equivalent, hence have the
same homology.

The definition of CKh(D) is neatly encapsulated in the following

Slogan ([3]). CKh(D) is obtained by applying a certain 1 + 1 dimensional TQFT
A to the cube of resolutions of D.

whose meaning we now explain.

3.1. Cube of resolutions If c is a crossing of the diagram D, we may turn the
paper (or our head) until the crossing appears as shown in Figure 3.1.1. As
illustrated in the figure, the crossing c can be resolved in two ways, which we call
the 0 and 1-resolutions.
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0 1

Figure 3.1.1. The 0 and 1 resolutions of a crossing

Vertices: If D has n crossings, there are 2n ways to resolve all n of them, which
(after ordering the crossings) are naturally in bijection with the vertices of the
cube [0, 1]n. If v is a vertex of the cube, we write Dv for the planar diagram of the
corresponding resolution. Dv has no crossings, so it is a collection of embedded
circles in the plane. We will (mostly) ignore the embedding, and view Dv as a
1-dimensional manifold.

The figure below illustrates this process for the Hopf link.

01

00 10

11

Figure 3.1.2. The cube of resolutions of the Hopf link

Edges: Along each edge e of the cube, one coordinate varies from 0 to 1, while
all the other coordinates are fixed. We orient e to point from the vertex v0 where
the variable coordinate is 0 to the vertex v1 where the variable component is 1, as
shown in Figure 3.1.2, and write e : v0 → v1.

To each edge e : v0 → v1, we assign a surface Se with ∂Se = Dv0 ∪Dv1 . The dia-
grams Dv0 and Dv1 are identical away from a neighborhood of a single crossing c,
and we define Se to be the product Dv0 × I away from this neighborhood. Inside
this neighborhood, Se is given by the saddle cobordism shown in Figure 3.1.3.

1

0

Figure 3.1.3. Cobordism from Dv0 to Dv1
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Equivalently, Se is obtained from Dv0 × I by attaching a 1-handle whose core
is the red curve shown in the figure.

3.2. The Cobordism Category If Y1 and Y2 are compact oriented n-manifolds,
we define a cobordism W from Y1 to Y2 to be a compact oriented n+ 1-manifold
with ∂W = −Y1

∐
Y2. We write W : Y1 → Y2. Two cobordisms W,W ′ : Y1 → Y2

are equivalent if there is a homeomorphism f : W → W ′ whose restriction to ∂W
is the identity. If W1 : Y1 → Y2 and W2 : Y2 → Y3 are cobordisms, their composition
W2 ◦W1 :=W1 ∪Y2 W2 is a cobordism from Y1 → Y3, as shown in Figure 3.2.1.

W2 ◦W1 : Y1 → Y3
W1 : Y1 → Y2 W2 : Y2 → Y3

Figure 3.2.1. Composition of Cobordisms

We define the n + 1 dimensional cobordism category to be the category whose
objects are compact oriented n−manifolds and whose morphisms are equivalence
classes of cobordisms between them. If Y is an object in this category, the identity
morphism 1Y is the product Y × [0, 1].

We would like to view the vertices of the cube of resolutions as being decorated
by objects of the 1+ 1 dimensional cobordism category, and its edges as being dec-
orated by morphisms. To do this, we must orient the objects involved. First note
that any circle embedded in R2 has a standard (counterclockwise) orientation.

Definition 3.2.2. Let Dv be a set of embedded circles in R2. The canonical ori-
entation on Dv is defined by giving the ith circle Ci (−1)ni times the standard
orientation, where ni is the number of circles separating Ci from infinity in R2.

This process is illustrated in the figure below.

Figure 3.2.3. The canonical orientation on circles embedded in R2.
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Exercise 3.2.4. Let e : v0 → v1 be an edge in the cube of resolutions. If we give
Dv0 and Dv1 their canonical orientations, show that Se is an oriented cobordism
from Dv0 to Dv1 .

Remark 3.2.5. Since Se is given by a single one-handle attachment and is ori-
entable, it is the disjoint union of a single pair of pants with some cylinders.

Exercise 3.2.6. A knot K ⊂ T2 × I can be represented by a planar diagram in T2,
and we can form the cube of resolutions for K as above. Show by example that
the surfaces Se may be nonorientable in this case.

Faces: Each 2-dimensional face of the cube of resolutions corresponds to a square
of morphisms in the cobordism category. This square commutes, since 1-handles
can be added in any order without changing the homeomorphism type of the
resulting surface. The situation is summarized in the first two columns of the
table below.

vertex v =⇒ 1-manifold Dv =⇒ group A(Dv)

edge e : v0 → v1 =⇒ cobordism
Se : Dv0 → Dv1

=⇒ linear map
A(Se) : A(Dv0)→ A(Dv1)

2 dim’l faces commute commute

3.3. Applying a TQFT A 1+ 1 dimensional topological quantum field theory (or
TQFT, for short) is a monoidal functor

A :

{
1-manifolds

cobordisms

}
→

{
abelian groups

linear maps

}
Saying that that A is monoidal means that it behaves well under disjoint unions: if
Y and Y ′ are 1-manifolds, then A(Y

∐
Y ′) = A(Y)⊗A(Y). Similarly ifW : Y1 → Y2,

W ′ : Y ′1 → Y ′2 are morphisms, then A(W
∐
W ′) = A(W)⊗A(W ′).

Applying A to the cube of resolutions, we get a cube whose vertices are labeled
by abelian groups A(Dv), and whose edges are labeled by linear maps A(Se).
Since A is a functor, the two dimensional faces in this cube still commute. The
situation is summarized in the last column of the table above.

We can now define the Khovanov complex. As a group

CKh(D) =
⊕
v

A(Dv)

where the sum runs over all vertices of the cube [0, 1]n. For x ∈ A(Dv), the
differential on CKh(D) is given by

dx =
∑
e:v→v ′

(−1)σ(e)A(Se)(x)

where σ is a map from the set of edges to {0, 1}, which we insert in order to make
d2 = 0. Indeed, we have



Jacob Rasmussen 33

Lemma 3.3.1. If σ is chosen so that each two dimensional face of the cube has an odd
number of edges with σ(e) = 1, then d2 = 0.

Proof. If v ′′ is a vertex of the cube obtained by changing two 0 coordinates of v to
1’s, then the component of d2(x) which lies in the summand in A(v ′′) is

(−1)σ(e1)+σ(e2)A(Se2) ◦A(Se1)(x) + (−1)σ(e3)+σ(e4)A(Se3) ◦A(Se4)(x)

where e1, e2, e3 and e4 are the edges of the two dimensional face containing v and
v ′′, labeled clockwise starting from v. Since two-dimensional faces of the cube
commute,

A(Se2) ◦A(Se1) = A(Se3) ◦A(Se4)

Thus to ensure that d2 = 0, it suffices to choose σ so that each two-dimensional
face of the cube has an odd number of edges with σ(e) = 1. �

The following exercise shows that it is possible to choose such a σ, and that
any two such choices give rise to isomorphic chain complexes.

Exercise 3.3.2. Let C∗ = C∗cell([0, 1]n; Z/2) be the cellular cochain complex of the
cube with Z/2 coefficients.

(1) Viewing σ as an element of C1, show that the condition of the lemma is
satisified if and only if dσ = τ, where τ ∈ C2 is the cochain which assigns
1 to each two-dimensional face of the cube. Deduce that it is possible to
choose σ satisfying the conditions of the lemma.

(2) Suppose σ ′ ∈ C1 also satisfies dσ ′ = τ, and let CKh(D) and CKh ′(D) be
the Khovanov complexes defined using σ and σ ′. Show that σ− σ ′ = dρ
for some ρ ∈ C0, and use ρ to define an isomorphism between CKh(D)

and CKh ′(D).

3.4. The TQFT A Up until this point, the construction we have described works
for any TQFT, but the resulting homology depends on the planar diagram D,
rather than its underlying link L. To get a chain complex whose homology is a
link invariant, we will use a particular TQFT A for which

A(S1) = 〈1, x〉 =: V

is a free abelian group of rank two. Since A is a monoidal functor, we must have

A(

n∐
S1) = V⊗n.

This completely specifies the functor A at the level of objects.
If Dv is a closed 1-manifold, we define a state of Dv to be a labeling of each

component of Dv by either 1 or x. The Z-module A(Dv) has a basis consisting of
states of Dv.

More generally, if D is a planar diagram, we define a state of D to be a choice
of a complete resolution of D, together with a state of the complete resolution.
CKh(D) has a basis consisting of states of D.
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Example 3.4.1. IfD is the diagram of the Hopf link shown in Figure 3.1.2, CKh(D)

has rank 12. A set of generators for the complex is shown in Figure 3.4.2.

1
x

1
xx⊗ 1

1⊗ 1

x⊗ x
1⊗ x

x⊗ 1
1⊗ 1

x⊗ x
1⊗ x

Figure 3.4.2. CKh(D), where D is the diagram of the Hopf link
shown in Figure 3.1.2. The generators in the boxes all have the
same q-grading.

Morse theory tells us that any cobordism is the composition of handle attach-
ments. It follows that any morphism in the cobordism category can be built up as
a composition of the elementary cobordisms shown in Figure 3.4.3 and their disjoint
unions with cylinders

S1 → ∅ ∅→ S1

S1 ∪S1 −→ S1 S1 −→ S1 ∪S1

Figure 3.4.3. Elementary cobordisms: merge, split, death, and birth

The functor A is monoidal, so to understand how it acts on morphisms, it is
enough to describe it for the cobordisms shown in the figure. The split and merge
morphisms give rise to maps

m : V ⊗ V → V ∆ : V → V ⊗ V

1⊗ 1 7→ 1 1 7→ 1⊗ x + x⊗ 1

1⊗ x, x⊗ 1 7→ x x 7→ x⊗ x

x⊗ x 7→ 0

while the birth and death morphisms give maps

η : Z→ V ε : V → Z

1 7→ 1 1 7→ 0

x 7→ 1.
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We have now given a complete definition of the complex CKh(D). Given enough
patience and/or computer memory, it is straightforward to compute the complex
and its homology for any planar diagram D.

Exercise 3.4.4. Compute the homology of the complex shown in Figure 3.4.2.

Exercise 3.4.5. Show that CKh(D) and CKh(D) are dual chain complexes.

Exercise 3.4.6. Suppose that A is a 1 + 1 dimensional TQFT, and let A = A(S1).
A can be equipped with maps m : A⊗ A → A, ∆ : A → A⊗ A, 1 : Z → A,
and ε : A → Z as above. Let ι : A ⊗ A → A ⊗ A be the involution given by
ι(a⊗ b) = b⊗ a. Use the fact that A is a TQFT to show that

(1) m(a⊗ b) = m(b⊗ a) and m(m(a⊗ b)⊗ c) = m(a⊗m(b⊗ c))
(2) ι ◦∆ = ∆ and (1A ⊗∆) ◦∆ = (∆⊗ 1A) ◦∆
(3) m(1⊗ a) = a and (ε⊗ 1A) ◦∆ = 1A
(4) ∆ ◦m = (m⊗ 1A) ◦ (1A ⊗∆).

A set A equipped with maps m (multiplication), ∆ (comultiplication), 1 (unit)
and ε (counit) satisfying the properties above is called a Frobenius algebra. The
exercise above shows that any 1 + 1 dimensional TQFT determines a Frobenius
algebra. Conversely, it can be shown [46] that any Frobenius algebra determines
such a TQFT.

At this point, it is quite natural to ask whether it is possible to replace the par-
ticular TQFT A used above with some other TQFT A ′. As the following exercise
shows, the possible choices of A are strongly restricted by the condition that the
homology should be a link invariant. (In fact, we will see in section 3.8 that the
TQFT used here is essentially the only one whose homology gives an interesting
link invariant.)

Exercise 3.4.7. Suppose A ′ is a 1 + 1 dimensional TQFT for which A ′(S1) is a
free abelian group of rank n. If D is a planar diagram, let CKhA ′ be the result
of applying the construction of section 3.3 with A ′ in place of A. Let D be the
zero-crossing diagram of the unknot, and let D ′ be a one-crossing diagram of the
unknot. Show that if CKhA ′(D) and CKhA ′(D

′) have isomorphic homology, then
n = 2.

3.5. Gradings CKh(D) can be equipped with a natural bigrading:

CKh(D) =
⊕
i,j

CKhi,j(D)

such that d : CKhi,j → CKhi+1,j. The first grading is the (co)homological grading
on CKh(D). If v is a vertex of [0, 1]n, we write |v| for the sum of the coefficients
of v. An element of A(Dv) has (co)homological grading |v|. It is clear from the
definition that d raises the cohomological grading by 1. To define the second
grading, which we call the q-grading, we first define a grading q̃ on V by

q̃(1) = 1 q̃(x) = −1
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and extend it to V⊗n by the relation q̃(a⊗ b) = q̃(a) + q̃(b). With respect to this
grading, A is a graded TQFT, in the sense that

q̃(A(S)(x)) = χ(S) + q̃(x)

for any cobordism S. The reader can easily check this for the maps induced by
the four elementary cobordisms above (note that any element of the ground ring
Z has q̃-grading 0). Any cobordism S is a composition of elementary cobordisms,
so the general case follows from the fact that χ(S1 ◦ S2) = χ(S1) + χ(S2).

Since each cobordism Se is the union of a pair of pants with some cylinders,
we see that if x ∈ A(Dv), then q̃(dx) = q̃(x) − 1. For x ∈ A(Dv), we define

q(x) = q̃(x) + |v|

so that q(dx) = q(x).

Remark 3.5.1. As the above discussion shows, q̃ is also a natural choice of homo-
logical grading on CKh(D); it appears as the homological grading in Seidel and
Smith’s symplectic Khovanov homology [73].

Since d preserves the q grading, CKh(D) decomposes as a direct sum of chain
complexes:

CKh(D) =
⊕
j

CKh∗,j(D).

We can combine the Euler characteristics of the summands together to form a
generating function

χ(Kh(D)) :=
∑
i,j

(−1)iqj rk CKhi,j(D)

which is called the graded Euler characteristic of Kh(D).
If we further define the the bigraded Poincaré polynomial of Kh(D) to be

P(Kh(D)) :=
∑
i,j

tiqj rk Khi,j(D),

then the usual argument shows that χ(Kh(D)) = P(Kh(D))|t=−1.

3.6. Invariance Let D be a planar diagram of L. To pin down the exact normal-
ization of the Jones polynomial V(L), we needed to fix an orientation on L and
shift 〈D〉 by some power of q depending on the number of positive and negative
crossings in D. The situation for Kh is similar, but now we need to shift both the
homological and q-gradings. Our notation for this is as follows. For n,m ∈ Z,
we define tmqnCKh(D) to be the bigraded chain complex whose i, jth group is
CKhi−m,j−n(D). The notation is chosen so that

P(tmqmKh(D)) = tmqnP(Kh(D)).

If o is an orientation on our diagram D, we let n±(D,o) be the number of
positive/negative crossings in D, and define

CKh(D,o) = t−n−(D,o)qn+(D,o)−2n−(D,o)CKh(D).
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Exercise 3.6.1. Let Do be the diagram obtained by taking the oriented resolution
at each crossing of D. Show that in the shifted complex CKh(D,o), the summand
A(Do) is in homological grading 0.

The first main result of Khovanov’s original paper is

Theorem 3.6.2 ([39]). If (D,o) and (D ′,o ′) are oriented diagrams related by a Reide-
meister move, then CKh(D,o) is chain homotopy equivalent to CKh(D ′,o ′).

The proof of this theorem will be given in the next lecture. It justifies

Definition 3.6.3. If L is an oriented link in S3 represented by a planar diagram D

with orientation o, then Kh(L) := Kh(D,o).

The second main result of [39] is that the graded Euler characteristic of Kh(L)
is given by the Jones polynomial:

Theorem 3.6.4. For any oriented link L as above ,

χ(Kh(L)) = V(L) .

Proof. Up to overall shifts, this follows easily from equation 1.4.1, which expresses
〈D〉 as a sum over vertices in the cube of resolutions. We have

χ(CKh(D)) ∼
∑
v

(−q)|v| qdimA(Dv)

∼
∑
v

(−q)|v|(q+ q−1)|Dv|

∼
∑
v

An−2|v|B|Dv| = 〈D〉

where q = −A−2 and B = −A2 −A−2 = q+ q−1. We leave the reader to check
that the overall shifts match up correctly. �

3.7. Functoriality One important property of the Khovanov homology is the fact
that it is projectively functorial: cobordisms of links induce maps on Kh which
are well-defined up to an overall sign.

Definition 3.7.1. Suppose that L0 and L1 are oriented links in R3. A cobordism
from L0 to L1 is an smooth properly embedded oriented surface Σ ⊂ R3 × I such
that ∂Σ = −L0 × {0}∪ L1 × {1}.

Two cobordisms Σ0,Σ1 from L0 to L1 are equivalent if there is a smooth isotopy
Φ : Σ× I→ R3× I such that the restriction of Φ to each Σ× t is a cobordism from
L0 to L1, Φ|Σ×0 = Σ0, Φ|Σ×1 = Σ1, and for each x ∈ ∂Σ, Φ|x×I is a constant map.
(In other words, the isotopy fixes both L0 and L1).

As we did with abstract cobordisms, we can form a category whose objects are
links in R3 and whose morphisms are equivalence classes of cobordisms between
them. Following [39], we would like to define a functor from this category to
the category of abelian groups and linear maps, which on objects is given by Kh.
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The basic philosophy behind this definition is to divide the given cobordism into
a sequence of elementary cobordisms. We then define the map induced by each
elementary cobordism at the chain level, as a map on CKh.

0−handle:

1−handle:

2−handle:

Figure 3.7.2. The three Morse moves.

Definition 3.7.3. A movie is a finite subset S = {t1, . . . , tn} ⊂ (0, 1), together with a
planar diagram Dt for each t ∈ I− S, such that for t ∈ (ti, ti+1), Dt is an isotopy
of planar diagrams, and for small ε, the diagrams Dti−ε,Dti+ε are related by
either a Reidemeister move or one of the Morse moves shown in Figure 3.7.2.

Let Σ : L0 → L1 be a cobordism. After a small isotopy of Σ, we may arrange
that Lt := Σ∩ (R3 × {t}) is a link for all but finitely many values of t, and that the
associated planar diagrams Dt form a movie, which is said to represent Σ. Just
as any two planar diagrams representing a given link are related by Reidemeister
moves, it can be shown that any two movies representing the same cobordism are
related by a finite sequence of elementary moves, known as movie moves [12].

To each Reidemeister move Ri (i = 1, 2, 3) relating diagrams D0 and D1, we
assign a chain map ΦRi : CKh(D0) → CKh(D1). ΦRi is the chain homotopy
equivalence provided by theorem 3.6.2. These maps will be described explicitly
in the next lecture.

Similarly, for each Morse move Mi (i = 0, 1, 2) relating diagrams D0 and D1,
we assign a chain map ΦMi

: CKh(D0) → CKh(D1). ΦMi
is given by the corre-

sponding map in the TQFT A. To be precise, the crossings of D0 can naturally
be identified with those of D1, so the vertices of the cube of resolutions for D0

and D1 can also be identified. For each vertex v, the Morse move gives a natural
cobordism (corresponding to the addition of a single handle) Sv : (D0)v → (D1)v.
For x ∈ A((D0)v), we define

ΦMi
(x) = A(Sv)(x).

We leave it as an exercise to the reader to check that ΦMi
is a chain map.
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To a movie {Dt}, we want to assign a chain map

ΦDt : CKh(D0)→ CKh(D1).

As t varies in the interval (ti, ti+1), the diagrams Dt change only by isotopy,
so the chain complexes CKh(Dt) are all isomorphic. The diagrams Dti−ε and
Dti+ε are related by either a Reidemeister or a Morse move, and we then let
Φti : CKh(Dti−ε)→ CKh(Dti+ε) be the map defined above. Finally, we let ΦDt
be their composition:

ΦDt := Φtn ◦Φtn−1 ◦ · · · ◦Φt1 .

To sum up, we have assigned a chain map ΦDt : CKh(D0) → CKh(D1) to
each movie Dt, which induces a map on homology ΦDt : Kh(D0) → Kh(D1).
These maps were defined in Khovanov’s first paper [39]. The question of whether
these maps are functorial (that is, invariant under the movie moves) was first
investigated by Jacobsson [35].

Theorem 3.7.4 ([35]). The map ΦDt is projectively functorial; that is, if Dt and D ′t are
two movies representing equivalent cobordisms, then ΦDt is chain homotopic to ±ΦD ′t .

The sign ambiguity is necessary: Jacobsson found explicit pairs of movies rep-
resenting the same cobordism for which the induced maps have opposite sign.
Subsequently, Clark, Morrison and Walker [15] and Blanchet [10] showed that
the sign ambiguity can be eliminated, but at the cost of redefining the Khovanov
homology.

Theorem 3.7.5. [10, 15] There is a functor F from the category of oriented links and
cobordisms between them to the category of abelian groups such that

(1) A planar diagram D for L yields an isomorphism ιD : Kh(D)→ F(L).
(2) If Dt is a movie representing a cobordism Σ, then ΦDt = ±ι

−1
D1
◦F(Σ) ◦ ιD0 .

3.8. Deformations To define CKh(D), we applied the TQFT A to the cube of
resolutions of D. If we apply a different TQFT A ′, the result will still be a chain
complex, but its homology need not be invariant under the Reidemeister moves.
The structure of a (1+1) dimensional TQFT is more or less determined by the
multiplicative ring of its underlying Frobenius algebra. For Khovanov homology,
this is A = Z[X]/X2. We have already seen (Exercise 3.4.7) that in order to get a
knot invariant A ′ = A ′(S1) must have rank 2, so a natural guess is to consider a
Frobenius algebra with multiplicative ring A ′ = Z[X]/(X2 − aX− b) for a,b ∈ Z.
(In other words, m(x⊗ x) = ax+b.) We can find a Frobenius algebra of this form;
the comultiplication is given by

∆(1) = 1⊗ x + x⊗ 1 − a1⊗ 1 and ∆(x) = x⊗ x + b1⊗ 1.

It can be shown that any such A ′ determines a knot invariant KhA ′(L).

Semi-simple TQFT’s: The structure of KhA ′(L) was largely determined by Lee
and Turner [50,80]. We begin with the observation that if X2 −aX−b has distinct
roots, A ′ can be written in a particularly simple form.



40 Knots, Polynomials, and Categorification

Definition 3.8.1. Suppose A ′ is a 1 + 1 dimensional TQFT defined over a field
F, and let A be the corresponding Frobenius algebra. We say A ′ is semi-simple if
A ′ =

⊕n
i=1Ai, where each Ai is a 1-dimensional Frobenius algebra.

The existence of a unit and co-unit imply that if vi is a nonzero element of Ai,
then m(vi ⊗ vi) = kivi and ∆(vi) = civi ⊗ vi, where ci 6= 0 6= ki.

Lemma 3.8.2. Suppose A ′ is a 1 + 1 dimensional TQFT whose Frobenius algebra has
multiplicative ring A ′ = F[X]/(p(X)), where p(X) splits over F with distinct roots. Then
A ′ is semi-simple.

Proof. Let n = dimA ′ = degp. We view multiplication by X as a linear operator
X : A ′ → A ′. This operator satisfies the relation p(X) = 0, so p divides the
characteristic polynomial of X. But n = degp, so p must be the characteristic
polynomial. Since p splits over F, we have distinct eigenvalues λ1, . . . , λn ∈ F. It
follows that X is diagonalizable. Let {v1, . . . , vn} be a basis of eigenvectors with
X(vi) = λivi.

Let Ai be the subspace of A ′ spanned by vi. We will show that A ′ ' ⊕Ai (as
Frobenius algebras). First consider the multiplication. We have

X(m(vi ⊗ vj)) = m(m(X⊗ vi)⊗ vj) = λim(vi ⊗ vj),

and

X(m(vi ⊗ vj)) = X(m(vj ⊗ vi)) = λjm(vj ⊗ vi) = λjm(vi ⊗ vj).

Since λi 6= λj, we must have m(vi ⊗ vj) = 0 for i 6= j. Similarly, we must have
X(m(vi ⊗ vi)) = λim(vi ⊗ vi), which implies m(vi ⊗ vi) ∈ Ai.

Next, the comultiplication: on A ′⊗A ′ we have two linear operators Xl and Xr
which act by multiplication by X on the left and right-hand tensor factors. ∆(vi)
is an eigenvector for both Xl and Xr; the eigenvalue in both cases is λi. It follows
that ∆(vi) = civi ⊗ vi. �

In contrast, the TQFT A used to define Khovanov homology is not semi-simple;
the Jordan normal form of the operator X is given by the upper triangular matrix(

0 1

0 0

)
.

Canonical Generators: Let D be a diagram representing L. If A ′ is semi-simple,
Lee describes an explicit set of generators for KhA ′(D). The elements of this set
are in bijection with orientations on D.

Given an orientation o of D, the oriented resolution of D with respect to o is
an oriented collection of circles in the plane. Let h(C) be the nesting height (as in
the proof of Lemma 2.6) of such a circle, and let

p(C) =

{
h(C) if C is oriented counterclockwise

h(C) + 1 if C is oriented clockwise
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Definition 3.8.3. Suppose A ′ is semi-simple, with simple summands generated
by v1 and v2. If o is an orientation of D, the canonical generator so ∈ CKhA ′(D)

is state obtained by taking the oriented resolution of D with respect to o and
labeling each circle C by v1 if p(C) is odd, and v2 if p(C) is even.

Figure 3.8.4. On the left, two strands in a disk. On the right are
some possible closures.

Lemma 3.8.5. Consider an embedded disk which intersects the diagram for so in two
strands, as shown on the left of Figure 3.8.4. If the orientations on the two strands are
parallel, they have different labels; if the orientations are opposite, the labels are the same.

Proof. Consider the circles containing the two strands. Up to a rotation of the
diagram, they must be in one of the three configurations shown on the right-hand
side of the figure. If there is one circle in the closure, the two orientations must
point in opposite directions and have the same label. If there are two nested circles
C1 and C2, then h(C1) ≡ h(C2) + 1 mod 2. In this situation, the orientations are
either parallel, and then p(C1) 6≡ p(C2), or opposite, and then p(C1) ≡ p(C2).
Either way, the statement holds. The case where C1 and C2 are not nested is
similar. �

Corollary 3.8.6. so is closed in CKhA ′(D).

Proof. Let vo be the vertex of the cube of resolutions associated with the oriented
resolution of L, and let e : vo → v ′ be an edge. The two strands near the crossing
have parallel orientations. By the lemma, they have opposite labels. Thus they
belong to different components of Dvo , and the cobordism Se is a merge. Since
m(v1 ⊗ v2) = 0, we have A ′(Se)(so) = 0. �

Theorem 3.8.7. ([50, 80]) If A ′ is a semisimple TQFT defined over F, then KhA ′(L; F)
is freely generated by the classes so, where o runs over the set of orientations on L. In
particular, KhA ′(L; F) has dimension 2|L|.

Proof. By induction on the number of crossings in D. When D has no crossings,
KhA ′(D) = A ′(D) has dimension 2|D| and is generated by states in which we
label each component of D by either v1 or v2. These are the canonical generators.

In general, chose a crossing c of D and let D0 and D1 be the diagrams obtained
by resolving c. There is a short exact sequence

0→ CKhA ′(D1)→ CKhA ′(D)→ CKhA ′(D0)→ 0
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which comes from splitting the cube of resolutions for D into two halves, ac-
cording to the way that c is resolved. We will compute the boundary map
∂ : KhA ′(D0)→ KhA ′(D1) in the associated long exact sequence.

By induction, KhA ′(D0) and KhA ′(D1) are generated by canonical generators.
Let o be an orientation on D0, and let vo be the vertex of the cube of resolutions
for D0 given by taking the oriented resolution with respect to o. The canonical
generator so ∈ CKh(D0) is supported at vo. In the cube of resolutions forD, there
is a unique edge e which points from vo to a vertex v ′o in the cube of resolutions
for D1; namely, the edge corresponding to changing the resolution at c from the
0 resolution to the 1 resolution. It follows that ∂[so] = [A ′(Se)(so)].

At this point, the argument splits into three cases, depending on how the
ends at the crossing c are joined up in L. The three possibilities are shown in
Figure 3.8.8 below.

a) b) c)

Figure 3.8.8. The three possible ways of joining up the ends of a
crossing.

In case a), |D| = |D1| = |D0|− 1, so there are twice as many orientations on D0

as on D or D1. We can divide the orientations on D0 into two types: those in
which the orientation on the two strands near c is parallel, and those in which
it is opposite. As shown in the figure below, orientations of the first type are
in bijection with orientations on D, and orientations of the second type are in
bijection with orientations on D1.

If o is of the first type, Lemma 3.8.5 implies that the labels on the two strands
are different. It follows that Se is a merge, and A ′(Se)(so) = 0. If o is of the
second type, the labels are the same. In this case, A ′(Se)(so) = cso1 , regardless
of whether Se is a merge or a split. Here o1 is the orientation on D1 which
corresponds to o, and c 6= 0. We conclude that ∂ : KhA ′(D0) → KhA ′(D1) is
surjective, and KhA ′(D) = ker∂ is freely generated by the classes [so], where o
runs over orientations of D.

Cases b) and c) are very similar. In case b), D1 has twice as many orientations
as D or D0, and the boundary map is a surjection, while in case c), D has twice
as many orientations as D0 and D1, and the boundary map vanishes. We leave
the details for the reader. �
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In order to fix the homological grading on Kh(L), we needed to fix an orienta-
tion o on L. The vertex Do of the cube of resolutions is in homological grading
0. If K is a knot either orientation gives the same homological grading, and
both canonical generators are in homological grading 0. More generally, the two
generators so, s−o will be in homological grading 0; the grading of all the other
generators is determined by the pairwise linking numbers of the components of
L [50].

Lee’s spectral sequence: The existence of the q-grading on Khovanov homology
depended on the fact that A is a graded TQFT: q̃(A(S)(x)) = q̃(x) + χ(S). A quick
look at the formulas for m ′ and ∆ ′ shows that this does not hold for A ′; however
A ′ is filtered, in the sense that the q̃-grading of every term that appears in A(S)(x)

is at least q̃(x) + χ(S). The associated graded TQFT (obtained by ignoring all
terms that strictly raise the q-grading) is A. In turn, CKhA ′(D) is a filtered chain
complex. The associated graded chain complex (obtained by ignoring all terms
in the differential that strictly raise the q-grading) is CKh(D). We deduce from
these observations that

Proposition 3.8.9. There is a spectral sequence with E1 term Kh(L) which abuts to
KhA ′(L). The filtration grading in this spectral sequence is given by the q-grading
on Kh(L).

We should think of the combination of Theorem 3.8.7 and Proposition 3.8.9
and as categorifying the fact that VL(1) = 2|L|. This is the first incidence of
a general principle: identities where we specialize a variable in a polynomial
typically categorify to give a spectral sequence. In this case (and in many others)
it can be shown that the Ei term of the sequence is an invariant of L for all
i > 0. When this is the case we get a bonus invariant: the filtration grading of the
surviving generators in the spectral sequence.

For concreteness, we now specialize to the situation originally considered by
Lee, in which F = Q and A ′ = Q[X]/(X2 − 1). In this case, it can be shown [66]
that the filtration grading of the two generators in the spectral sequence for
CKhA ′(K; Q) are of the form smin, smax, where smax − smin = 2

Definition 3.8.10. If K is a knot in S3, s(K) = smin + 1 = smax − 1.

For example if Kh( ) = A(S1) has dimension 2, so the spectral sequence has
already converged at the E1 term. In this case smin = −1, smax = 1, and s( ) = 0.

Maps induced by cobordism: If Σ : L0 → L1 is a cobordism, we can define a
map Φ ′Σ : KhA ′(L0) → KhA ′(L1) exactly as we did for Khovanov homology, but
using A ′ in place of A. Φ ′Σ is a filtered map of degree χ(Σ).

If ô is an orientation on Σ, let −ô0 and ô1 be the induced orientations on L0

and L1. (With this convention, if Σ = L× [0, 1], ô0 and ô1 are the same orientation
on L.) Let O(Σ) be the set of all orientations on Σ.
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Theorem 3.8.11 ([66]). If o is an orientation on L0 and Σ : L0 → L1 is a cobordism,
then

Φ ′Σ(so) =
∑

{ô∈O(Σ) | ô0=o}

côsô1

where cô 6= 0 for all orientations ô ∈ O(Σ).

Sketch of Proof. First, note that

O(Σ ◦ Σ ′) = {(ô, ô ′) ∈ O(Σ)×O(Σ ′) | ô0 = ô ′1}.

If the statement holds for Σ and Σ ′, then

Φ ′Σ◦Σ ′(so) = Φ
′
Σ ◦Φ

′
Σ ′(so)

=
∑

{ô∈O(Σ) | ô0=ô
′
1}

∑
{ô ′∈O(Σ ′) | ô ′0=o}

côcô ′sô1

=
∑

{ô ′′∈O(Σ◦Σ ′) | ô ′′0 =o}

cô ′′sô ′′1
,

so it holds for Σ ◦Σ ′ as well. Hence it is enough to check that the statement holds
for elementary cobordisms. The case where Σ is cobordism corresponding to a
Reidemeister move is checked in [66].

We check the statement holds for Morse moves. Let o be an orientation on L0.
First, suppose Σ is a 0-handle attachment, and let C be the new circle created in
L0. There are two orientations on Σ compatible with o, corresponding to the two
possible orientations on C. Now Φ ′Σ(so) is the state in which all the labels on the
old circles remain the same and C is labeled by 1. Since 1 = c1v1 + c2v2 with both
ci 6= 0, the statement holds.

Next, suppose Σ is obtained by attaching a 1-handle. The 1-handle attachment
can either be compatible with o or incompatible. If it is compatible, there is
a unique orientation ô ∈ O(Σ) with ô0 = o0. The two strands on which the
attachment takes place have opposite orientations in so, hence the same label, so
we have Φ ′(Σ)(so) = csô1

with c 6= 0 regardless of whether the cobordism is a
split or a merge.

If the orientation on the 1-handle is incompatible with o, then there is no
ô ∈ O(Σ) with ô0 = o. The two strands on which the attachment takes place have
the same orientation in s0 hence opposite labels. It follows that the cobordism is
a merge and Φ ′(Σ)(so) = 0. Thus the statement holds in this case.

Finally, we consider the case where Σ is a 2-handle attachment. In this case,
there is a unique ô ∈ O(Σ) with ô0 = o. Since ε ′(v1) 6= 0 6= ε ′(v2), it is easy to see
that Φ ′Σ(so) = csô1

with c 6= 0, and the statement holds in this case as well. �

Corollary 3.8.12. If K0 and K1 are knots and Σ : K0 → K1 is a connected cobordism,
then Φ ′Σ : KhA ′(K0; Q)→ KhA ′(K1; Q) is an isomorphism.

Corollary 3.8.13. If Σ : K0 → K1 is a connected cobordism, then s(K1) > s(K0) + χ(Σ).
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Proof. If D is a diagram of K we have

smax(K) = max {q(x) | [x] 6= 0 ∈ Kh ′(D)}.

Let D0 be a diagram of K0, and choose an x ∈ CKh ′(D0) which realizes the
maximum. Then [ΦΣ(x)] 6= 0 ∈ Kh ′(K1), so

smax(K1) > q(ΦΣ(x)) > q(x) + χ(Σ) = smax(K0) + χ(Σ). �

The slice genus:

Definition 3.8.14. If K is a knot in S3, the smooth slice genus of K is

g∗(K) = min{g(Σ) |Σ ↪→ B4 is a smoothly embedded, orientable, and ∂Σ = K}

If Σ is a surface as in the definition, removing a small ball around a point in Σ
gives a cobordism Σ̃ : K→ with χ(Σ̃) = −2g(Σ). Applying Corollary 3.8.13, we
get s(K) 6 2g(Σ) + g( ) = 2g(Σ).

Exercise 3.8.15. Using exercise 3.4.5, show that s(K) = −s(K).

Since g∗(K) = g∗(K), we deduce

Corollary 3.8.16. |s(K)| 6 2g∗(K).

Unlike the Seifert genus, the slice genus can vanish for a nontrivial knot. If
g∗(K) = 0, we say that K is slice.

Exercise 3.8.17. Show that g∗(K#K) = 0 for any knot K.

A surface Σ ⊂ B4 is locally flat if every point of Σ ⊂ B4 has an open neighbor-
hood U such that the pair (U,Σ∩U) is homeomorphic to (R4, R2). The topological
slice genus is defined to be

gtop∗ (K) = min{g(Σ) |Σ ⊂ B4 is locally flat, orientable, and ∂Σ = K}.

A smooth surface is locally flat, but it turns out that the converse is false.

Theorem 3.8.18 (Freedman). If ∆(K) = 1, then gtop∗ (K) = 0.

Let P(−3, 5, 7) be the (−3, 5, 7) pretzel knot from Figure 1.1.3. As we saw
in execise 7, section 2, ∆(P(−3, 5, 7)) = 1, so this knot is topologically slice.
In contrast, direct computation shows that s(P(−3, 5, 7)) = 2 and hence that
g∗(P(−3, 5, 7)) = g(P(−3, 5, 7)) = 1. Hence s can be used to detect the difference
between smooth and locally flat embeddings. In combination with a theorem of
Freedman and Quinn on smoothing topological 4-manifolds with boundary, this
can be used to construct a manifold homeomorphic, but not diffeomorphic, to
the standard R4. For details, see [25].

3.9. Connections and Further Reading There is an extensive literature on Kho-
vanov homology — far more than we can survey here. We mention only a few
highlights. First, its module structure. As observed by Khovanov [42], Kh(L) is
a module over the ring Z[X1, . . . ,Xn]/(X2

1, . . .X2
n), where there is one variable for
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each component of X. When L = K is a knot, this gives reduced homology groups
Khr(K) satisfying χ(Khr(K)) = V(K) (the normalized Jones polynomial).

Second, its behavior for the simplest knots. If K is an alternating knot, Kh(K)
is thin: Khi,jr (K) = 0 unless 2i− j = σ(K). It follows that Khr(K) (and also Kh(K))
is determined by the Jones polynomial and signature of K. This was conjectured
(in the unreduced case) by Bar-Natan [3], and proved by Lee [50], who created
her epynomous spectral sequence in the process.

Third, its relations with Floer homology. The most immediate comparison is
with knot Floer homology ĤFK(K), which categorifies the Alexander polynomial
and is discussed in Hom’s lectures. The invariant s(K) was defined in analogy
with the Ozsváth-Szabó τ-invariant and gives a similar bound on the slice genus.

In another direction, there are many invariants which satisfy unoriented skein
exact sequences similar to that satisfied by Khovanov homology. If we use Z/2
coefficients, such theories are often the target of spectral sequences whose E1 term
is Kh(K; Z/2). The first example is in a beautiful paper of Ozsváth and Szabó [61],
who constructed a spectral sequence from Kh(K; Z/2) to ĤF(Σ(−K); Z/2) — the
Heegaard Floer homology of the branched double cover of K. Another is due
to Kronheimer and Mrowka [48], who constructed a spectral sequence from
Kh(K; Z/2) to their instanton knot homology KHI(K; Z/2). As a consequence,
they proved that Khovanov homology detects the unknot.

Finally, the symplectic Khovanov homology of Seidel and Smith [74] is defined
geometrically using Lagrangian Floer homology. It is isomorphic to Khovanov
homology, as proved by Abouzaid and Smith [2].

Two more recent developments worth knowing are the Batson-Seed spectral
sequence [6], which relates the Khovanov homology of a link to that of its com-
ponents, and Grigsby-Licata-Wehrli’s sl2 action on sutured annular Khovanov
homology [30].

4. Khovanov Homology for Tangles

In this lecture, we will extend the definition of Khovanov homology to the 2-
category of tangles and cobordisms between them. There are many ways to do
this, all of them more or less equivalent [5,41,45,77]. We will follow Bar-Natan [5],
whose construction is appealingly geometric. The ideas in this lecture will play a
central role in the subsequent lectures, so it’s worth spending time thinking about
them.

4.1. Tangles For each positive integer n, we fix a set Xn of n points in R.

Definition 4.1.1. An (n,m)-tangle is a proper smooth embedding

T :

(
a∐
i=1

I

)
q

 b∐
j=1

S1

 ↪→ R2 × I
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such that the set qai=1∂I is mapped bijectively onto (Xn × 0× 0)q (Xm × 0× 1).
In particular, a = (n+m)/2.

We label the coordinates on R2 by (x,y), and the coordinate on [0, 1] by s. Two
tangles T0, T1 are equivalent if there is an isotopy

Φ :
(
(qai=1I)q (qbj=1S

1)
)
× I→ R2 × I

such that Tt := Φ(·, t) is a tangle for all t ∈ [0, 1]. Note that this definition implies
that the boundary of the tangle is fixed under the isotopy.

Definition 4.1.2. We let Tn,m be the set of (n,m) tangles, and let Tn,m be the set
of (n,m) tangles up to isotopy.

For example, T0,0 is the set of isotopy classes of links in
R2 × I, which can be naturally identified with the set of
isotopy classes of links in R3. Just as with knots and links,
a tangle may be represented by a planar diagrams which
records the projection of the tangle to the sx plane, together with over and under-
crossings. As an example, a planar diagram of a (3,3) tangle is shown in the figure
to the right. As with links, it can be shown that two diagrams which represent
the same tangle are related by a sequence of Reidemeister moves.

An important property of tangles is that they satisfy a partial composition rule:
if T ∈ Tn,m and T ′ ∈ Tm,l, then TT ′ ∈ Tn,l is the tangle obtained by stacking T
and T ′ horizontally (in the s direction), as shown in the figure below.

T T ′ T T ′

Figure 4.1.3. Horizontal composition of tangles.

1

i− 1
i

i+1

n

i+2

Figure 4.1.4. From left: the elementary braids σi σ−1
i and the

non-invertible tangle Ui.

Example 4.1.5. It is easy to see that Tn,n forms a monoid under composition.
The braid group on n strands (written Brn) is the submonoid of Tn,n generated
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by the elementary braids σ±1
i shown in Figure 4.1.4. The reader should convince

him/herself that Brn is indeed a group. (Note that Tn,n is not a group; for
example the tangle Ui shown in the figure is not invertible.)

It can be shown that Brn has a presentation

Brn =

〈
σ1, . . .σn−1

∣∣∣ σiσj = σjσi |i− j| > 1

σiσi+1σi = σi+1σiσi+1

〉
.

The first set of relations is known as far-commutativity while the second corre-
sponds to the third Reidemeister move.

Definition 4.1.6. If T0, T1 are (n,m) tangles, a cobordism Σ : T0 → T1 is a smooth
properly embedded orientable surface Σ ⊂ R2 × I× I such that

∂Σ = T0 × 0∪ T1 × 1∪ (Xn × 0× 0× I)∪ (Xm × 0× 1× I).

We say cobordisms Σ,Σ ′ : T0 → T1 are equivalent if there is a diffeomorphism
ϕ : R2 × I× I → R2 × I× I such that ϕ restricts to the identity on ∂(R2 × I× I)
and ϕ(Σ) = Σ ′.

We will denote the coordinates on R2 × I× I by (x,y), s and t. Tangle cobor-
disms can be composed in two different ways. First suppose Σ : T0 → T1 is a
cobordism of (n,m) tangles, and Σ : T ′0 → T ′1 is a cobordism of (m, l) tangles.
Then ΣΣ ′ : T0T

′
0 → T1T

′
1 is the cobordism obtained by stacking Σ and Σ ′ in the s

direction. This is called horizontal composition. Second, if T0, T1, T2 are all (m,n)
tangles, Σ0 : T0 → T1, and Σ1 : T1 → T2, we get a cobordism Σ0 ◦ Σ1 : T0 → T2

by stacking in the t direction. This is called vertical composition. It is not hard
to see that both of these notions are well-behaved with respect to equivalence of
cobordisms. (Tangle cobordisms are hard to draw, but see Figures 4.2.4 and 4.2.5,
which illustrate the analogous compositions for planar tangles.)

A good way to think about these various compositions is to say that there is a
category whose objects are the sets Xn for n > 0 and for which Mor(Xn,Xm) is
the set of (n,m) tangles. For each n andm, the set Mor(Xn,Xm) is itself the set of
objects of a category whose morphisms are equivalence classes of cobordisms. A
more sophisticated way of saying this is that we have a 2-category with objects Xn
(n > 0), 1- morphisms given by tangles, and 2-morphisms given by equivalence
classes of cobordisms between tangles.

Exercise 4.1.7. Show that if T0 and T1 are isotopic (n,m) tangles, they are isomor-
phic as objects of the category Mor(Xn,Xm).

4.2. Planar Tangles

Definition 4.2.1. A planar (n,m) tangle is a proper smooth embedding

T :

(
a∐
i=1

I

)
q

 b∐
j=1

S1

 ↪→ R× I

such that the set qai=1∂I is mapped bijectively onto (Xn × 0)q (Xm × 1).
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We denote the set of all such tangles by Pn,m. We say a planar tangle is simple
if it has no closed components, and let Pn,m be the set of isotopy classes of simple
planar (n,m) tangles. For example, P2,2 consists of the two tangles 1 and U shown
in the figure below.

1 U

Exercise 4.2.2. Show that Pn,m has C(n+m)/2 elements, where Cr =
1

r+ 1

(
2r
r

)
is the rth Catalan number.

Definition 4.2.3. If T0, T1 are planar (n,m) tangles, a cobordism Σ : T0 → T1 is a
smooth properly embedded orientable surface Σ ⊂ R× I× I such that

∂Σ = T0 × 0∪ T1 × 1∪ (Xn × 0× I)∪ (Xm × 1× I).

We say cobordisms Σ,Σ ′ : T0 → T1 are equivalent if there is a diffeomorphism
ϕ : R× I× I→ R× I× I such that ϕ restricts to the identity on ∂(R× I× I) and
ϕ(Σ) = Σ ′.

S : U→ 1 S ′ : 1→ U

For example, the figure above shows the saddle cobordism S : U → 1 and its
reverse S ′ : 1→ U.

As before, if we are given Σ : T0 → T1 a cobordism of planar (n,m) tangles and
Σ : T ′0 → T ′1 a cobordism of planar (m, l) tangles, then we can form their horizontal
composition ΣΣ ′ : T0T

′
0 → T1T

′
1 by stacking in the s direction, as illustrated in the

figure below:

Figure 4.2.4. The horizontal composition SS ′ : U1→ 1U.
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If T0, T1, T2 are all planar (m,n) tangles, Σ0 : T0 → T1, and Σ1 : T1 → T2, their
vertical composition Σ0 ◦ Σ1 : T0 → T2 is obtained by stacking in the t direction:

Figure 4.2.5. The vertical composition S ◦ S ′ : U→ U.

4.3. The Kauffman Bracket Let R = Z[q±1], and define Vn,m to be the free
R-module generated by Pn,m. Suppose D is a planar diagram representing an
(n,m) tangle. If D has k crossings, there will be 2k ways to resolve all k, and the
set of possible resolutions is in bijection with the vertices of [0, 1]k. The diagram
Dv corresponding to the resolution at vertex v is a planar (n,m) tangle.

Definition 4.3.1. For D an (n,m) tangle diagram, its Kauffman bracket is

〈D〉 =
∑
v

(−q)|v|(q+ q−1)|Dv|D̃v ∈ Vn,m

where |Dv| denotes the number of closed components of Dv, and D̃v is the simple
planar tangle obtained by erasing all closed components of Dv.

Exercise 4.3.2. Let Ri and R ′i be the (i, i) tangle diagrams corresponding to the
ith Reidemeister move. Check that 〈Ri〉 ∼ 〈R ′i〉, where p1 ∼ p2 means p1 = ±qkp2

for some k ∈ Z.

Composition: We define · : Vn,m × Vm,l → Vn,l by setting D ·D ′ = 〈DD ′〉 when
D and D ′ are simple planar tangles, and extending bilinearly.

Proposition 4.3.3. For D an (n,m) tangle diagram and D ′ an (m, l) tangle diagram,

〈DD ′〉 = 〈D〉 · 〈D ′〉.

Proof. The cube of resolutions for DD ′ is the product of the cube of resolutions
for D and the cube for D ′, so

〈DD ′〉 =
∑
(v,v ′)

(−1)|v|+|v ′|(q+ q−1)|DvD
′
v ′ | ˜[DvDv ′ ]

=
∑
(v,v ′)

(−1)|v|+|v ′|(q+ q−1)|Dv|+|D ′
v ′ |D̃v · D̃v ′

= 〈D〉〈D ′〉. �
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Proposition 4.3.4. If two planar diagrams D and D ′ represent the same tangle, then we
have 〈D〉 ∼ 〈D ′〉.

Proof. We checked in the exercise above that the statement holds for the planar
diagrams Ri and R ′i corresponding to the ith Reidemeister move. From this, it
is easy to see that the statement holds if Dr and D ′r are (n,n) tangle diagrams
obtained by adding some horizontal arcs to a pair of Reidemeister diagrams. Fi-
nally, we observe that if D and D ′ are any two tangles related by a Reidemeister
move, then we can factor D = D0DrD1 and D ′ = D0D

′
rD1 where Dr and D ′r are

as above. Then

〈D〉 = 〈D0〉 · 〈Dr〉 · 〈D1〉 = 〈D0〉 · (±qk〈D ′r〉) · 〈D1〉 = ±qk〈D ′〉. �

Note that the proof of invariance of the Jones polynomial that we gave in
section 1.4 silently used the multiplicativity property of the bracket that we have
made explicit here. In order to eliminate the factor of ±qk, we would need to
consider framed tangles, but we will not do this here.

Definition 4.3.5. The multiplication above makes the R-module Vn,n into an al-
gebra, which is the Temperly-Lieb algebra TLn.

TLn is generated by the elementary planar tangles U1, . . . ,Un shown in Fig-
ure 4.1.4. It has a presentation

TLn =

〈
U1, . . .Un−1

∣∣∣∣∣
U2
i = (q+ q−1)Ui

UiUj = UjUi for |i− j| > 1

UiUjUi = Ui for |i− j| = 1

〉
.

Exercise 4.3.6. Check that the relations above hold. Write the five simple planar
(3, 3) tangles as products of the generators U1,U2, and compute the effects of
multiplying each of these basis elements by U1 and U2.

Exercise 4.3.7. Show that there is a homomorphism ψ2 : Brn → TLn given by

ψ2(σi) = 1 − qUi ψ2(σ
−1
i ) = 1 − q−1Ui,

and that 〈σ〉 ∼ ψ2(σ). Compute ψ2(σ1σ2σ3) and ψ2(σ
n
1 ).

4.4. Category theory The main goal of this lecture is to categorify the Kauffman
bracket introduced in the previous section. First, we review some basic notions
from category theory.

Gradings: A category C is graded if there is an invertible functor q : C → C,
called the grading shift. The graded categories we will consider all arise from the
following construction.

A category C is pre-graded if there is a function q : qX,Y Mor(X, Y) → Z such
that q(α ◦β) = q(α)+q(β) whenever the composition makes sense. The category
Tn,m is an important example. For T , T ′ ∈ Tn,m and Σ : T → T ′, we define
q(Σ) = χ(Σ) − (m+n)/2. If T0, T1, T2 ∈ Tn,m and Σ0 : T0 → T1, Σ1 : T1 → T2, then

χ(Σ0 ◦ Σ1) = χ(Σ0) + χ(Σ1) − χ(T1) = χ(Σ0) + χ(Σ1) − (n+m)/2



52 Knots, Polynomials, and Categorification

by additivity of the Euler characteristic. It follows that q(Σ0 ◦Σ1) = q(Σ0)+q(Σ1).
If C is pre-graded, we construct a graded category Cgr as follows. Objects of

Cgr are pairs (X,n) where X is an object of C and n ∈ Z. and we then define

MorCgr((X,n), (Y,m)) = {α ∈MorC(X, Y) |q(α) = n−m}.

The grading shift functor is given on objects by q((X,n)) = (X,n + 1) and on
morphisms by q(α) = α.

Exercise 4.4.1. Check that Cgr is a category and that q is a functor.

If C is a pre-graded cateory, we will denote the object (X,n) of Cgr by qnX.

Additive Categories: The category C is additive if

1) For all X, Y ∈ Obj(C), Mor(X, Y) is a Z-module;
2) composition of morphisms is bilinear; and
3) there is an object X⊕Y ∈ Obj(C) satisfying the usual categorical definition

of direct sum.

If C is an additive category and X, Y ∈ Obj(C) , we write Hom(X, Y) in place of
Mor(X, Y). Let X1, . . . ,Xr be a set of objects of C. If every object of C is isomorphic
to a finite direct sum of the Ci’s, we say that X1, . . . ,Xr generate C.

More generally, if C is graded, we say that X1, . . . ,Xr generate C if any object is
isomorphic to a finite direct of shifted copies of the Xi and write

Homq(X, Y) =
⊕
i∈Z

Hom(X,qiY).

For any category C, we have an additive category Add(C) with objects given by
finite formal direct sums

⊕n
j=1 Xn, Xj ∈ ObjC, morphisms by matrices of formal

linear combinations of morphisms in C, and composition by multiplication of
matrices. More precisely, if Gij is the free Z-module generated by Mor(Xj, Yi),
then we have

Hom(

n⊕
j=1

Xj,
m⊕
i=1

Yi) = {m×n matrices [αij] |αij ∈ Gij}.

Field Coefficients: If C is an additive category and A is a Z-module, we define
the category C⊗A to be the category whose objects are the objects of C and whose
morphism spaces are given by HomC⊗A(X, Y) = HomC(X, Y)⊗Z A. A case of
particular interest to us is when A = F is a field.

Quotient Categories: Suppose C is an additive category. An ideal I in C consists
of a subgroup IXY ⊂ Hom(X, Y) for each X and Y in Obj(C) such that for every
α ∈ Hom(W,X), β ∈ IXY , and γ ∈ Hom(Y,Z), α ◦β ∈ IWY and β ◦ γ ∈ IYZ hold.

If I is an ideal in C, the quotient category C/I is defined to have the same
objects as C and morphisms given by HomC/I(X, Y) = HomC(X, Y)/IXY . Note
that although the two categories have the same objects, two objects which are not
isomorphic in C may well become isomorphic in C ′.
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Example 4.4.2. Let C be the category of chain complexes over a ring R. C is an
additive category. It contains an ideal J which consists of all chain maps f which
are chain homotopic to the 0 map (i.e. f = dh+ hd for some h.) The quotient C/J
is the homotopy category of chain complexes over R.

Exercise 4.4.3. Let P be the category of planar tangles, and let R = Z[q±1]. Define
P to be the quotient of Add(P)⊗ R by the ideal generated by the local relation

= q+ q−1. Show that HomP(Xn,Xm) = Vn,m, and that · : Vn,m×Vm,l → Vn,l

is composition in P.

4.5. The Krull-Schmidt property

Definition 4.5.1. An additive graded category C is positively graded if C is gener-
ated by objects X1,X2, . . .Xr which satisfy

(1) Hom(Xi,qnXj) = 0 for any n < 0 and all i, j.
(2) Hom(Xi,Xj) = 0 for i 6= j.
(3) Hom(Xi,Xi) ' Z is generated by idXi .

If C is positively graded, it has a decreasing sequence of ideals J0 ⊃ J1 ⊃ . . .
where Jn is generated by morphisms in Hom(Xi,qmXj) for all i, j and every
m > n. Note that Hom(Y, Y ′)∩ Jn = 0 for all but finitely many n, since Y and Y ′

can each be written as a finite direct sum of the Xi’s.
The quotient C/J1 is the associated graded category; it satisfies

HomC/J1
(qaXi,qbXj) =

{
HomC(Xi,Xj) a = b

0 a 6= b
.

Proposition 4.5.2. Suppose Y and Y ′ are objects of a positively graded category C. If

Y =

N⊕
j=1

qajXf(j) '
M⊕
k=1

qbkXg(k) = Y
′,

then N = M and there is a bijection ϕ : {1, . . . ,N} → {1, . . . ,N} such that bϕ(j) = aj
and g(j) = f(ϕ(j)).

In other words, Y can be uniquely decomposed into a direct sum of shifted
copies of Xi. This is known as the Krull-Schmidt property.

Proof. First suppose all the aj’s and bk’s are 0. Then Hom(Y, Y ′) is a direct sum
of algebrasMni×mi(Z), wheremi is the size of the set f−1(i) and ni is the size of
g−1(i). For Hom(Y, Y ′) to contain an invertible element, we must have ni = mi
for all i = 1, . . . , r.

For the general case, let Y =
⊕
n∈Z q

nYn and Y ′ =
⊕
n∈Z q

nY
′
n be the images

of Y and Y ′ in C/J1. Then Hom(Y, Y ′) =
⊕
n∈Z Hom(Yn, Y ′n). Since Y ' Y ′, we

see that Yn ' Y
′
n for all n. The lemma now follows from the the first case. �

Corollary 4.5.3. If f ∈ Hom(Y, Y ′) and the associated graded morphism f : Y → Y
′ is

an isomorphism, then f is an isomorphism.
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Proof. Write f = f0 + f1, where f0 consists of those components of f in summands
of the form Hom(qnXi,qnXj) and f1 consists of those components in summands
Hom(qnXi,qmXj) where n < m. Then f0 = f is an isomorphism and f1 ∈ J1.
Write g = −f−1

0 f1, so f = f0(idY − g). Then f−1 =
(∑∞

i=0 g
i
)
f−1

0 . Note that
gi ∈ Ji, so all but finitely many terms of the sum are 0. �

4.6. Chain complexes over a category

Definition 4.6.1. A chain complex over an additive category C is a sequence

. . .
di+2−−−→ Ci+1

di+1−−−→ Ci
di−→ Ci−1

di−1−−−→ . . .

where each Ci ∈ Obj(C), di ∈ Hom(Ci,Ci−1), and di−1 ◦ di = 0 for all i.

The usual definitions of chain map, chain homotopy, and chain homotopy
equivalence can be easily generalized to complexes over C.

In general, it can be hard to tell whether two chain complexes over an arbitrary
category C are homotopy equivalent. If C is not abelian, we cannot take the
homology of a complex over it. However when C is positively graded, there is an
effective way of addressing this question.

If (C,d) is a chain complex over a positively graded category C, define the
associated graded complex (C,d) to be the image of (C,d) in the associated graded
category C/J1.

Definition 4.6.2. Suppose that (C,d) is a chain complex over a positively graded
category C, and that (C,d) is the associated graded complex. We say C is minimal
if d = 0.

Proposition 4.6.3. Suppose C and C ′ are finitely generated minimal chain complexes
over a positively graded category C. If C and C ′ are chain homotopy equivalent, they are
isomorphic.

Proof. Suppose f : C→ C ′, g : C ′ → C are chain maps inducing a chain homotopy
equivalence. Then f : C → C

′, g : C
′ → C induce a chain homotopy equivalence

in the associated graded category. Since C and C ′ are minimal, d = d
′
= 0, and

f and g are isomorphisms. Since C and C ′ are finitely generated, Corollary 4.5.3
implies that the map fi : Ci → C ′i is an isomorphism for each i. Hence f is an
isomorphism of chain complexes. �

Starting with an arbitrary complex C, we can try to find a minimal complex
by repeatedly applying the following lemma, whose proof is left as an exercise to
the reader.

Lemma 4.6.4 (Cancellation). If ι ∈ Hom(A,A) is an isomorphism, the complex

→ Cn+1

dn+1

f


−−−−−−→ C ′n ⊕A

α β

γ ι


−−−−−−→ C ′n−1 ⊕A

dn−1

g


−−−−−−→ Cn−2 →
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is homotopy equivalent to the complex

→ Cn+1
dn+1−−−→ C ′n

α−βι−1γ−−−−−−→ C ′n−1
dn−1−−−→ Cn−2 →

We describe the operation of passing from the larger complex to the smaller
one by saying that we cancel the two objects isomorphic to A.

Proposition 4.6.5. Suppose C is a positively graded category with coefficients in a field
F. Then any finitely generated complex over C is homotopy equivalent to a minimal
complex.

Proof. By induction on the total number of summand in C. Since C has coeffi-
cients in a field, any nonzero component of d which belongs to a summand of
the form Hom(qnXi,qnXi) is an isomorphism. If d 6= 0, we can find such a
component of d. Canceling produces a homotopy equivalent complex which has
fewer summands. �

In practice, many complexes considered here can be reduced to minimal form
by repeated application of Lemma 4.6.4 over Z, with no need to pass to a field.

4.7. The Cube of Resolutions We now turn our attention to the problem of
categorifying the Jones polynomial of a tangle.

Definition 4.7.1. Suppose that D0,D1 ∈ Pn,m are planar n-tangles. A marked
cobordism S : D0 → D1 is a pair S = (S,P) where S ↪→ R× I× I is a cobordism
from D0 to D1, and P ⊂ int S is a finite set of marked points. Marked cobordisms
(S1,P1), (S2,P2) : D0 → D1 are said to be equivalent if there is a homeomorphism
ϕ : R× I× I which takes (S1,P1) to (S2,P2) and is the identity on ∂R× I× I.

Let C be the category whose objects are planar (n,m) tangles and whose mor-
phisms are marked cobordisms between them. C is pre-graded, with

q(S,P) = χ(S) − 2|P|− (m+n)/2.

We define Cobn,m = Cgr. Just as for tangles in R2 × I, there is a 2-category
Cob whose 1-morphisms are planar tangles and whose 2-morphisms are marked
cobordisms between them. In particular, we have horizontal and vertical compo-
sitions of marked tangles whose definitions are completely analogous to those for
planar tangles.

Given a (m,n) tangle diagram D, we can form the cube of resolutions of D.
We label each vertex v of the cube with its associated resolution q|v|Dv, which is
an object of Cobn,m. Similarly, we label each edge e : v0 → v1 with the morphism
Se = (Se, ∅) : q|v0|Dv0 → q|v1|Dv1 . Here Se is the standard saddle cobordism in a
neighborhood of the crossing, and the product cobordism outside of it. We have
q(Se) = χ(Se) − (n+m)/2 = −1 = |v0|− |v1|, so Se is a morphism in the graded
category Cobn,m.

To build a cochain complex C(D) from this cube, we pass to the additive cate-
gory Add(Cobm,n), in which we are allowed to take formal direct sums of objects
and formal linear combination of morphisms.
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C =

q

q2

q

q ⊕q

q2[sl]

[su]

[−sl]

[su]

=

[
sl

su

] [
su − sl

]

Figure 4.7.2. An example of a complex C(D)

Definition 4.7.3. At the level of objects, the complex C(D) is given by

Ci(D) =
⊕
|v|=i

qiDv,

The differential di : Ci(D) → Ci+1(D) will be a matrix whose columns are
labeled by vertices with |v| = i and whose rows are labeled by vertices with
|v| = i+ 1. If |v0| = i and e : v0 → v1, the corresponding entry in the matrix for
di will be (−1)σ(e)Se, where σ(e) is a sign assignment as in Lemma 3.3.1; if there
is no such edge, the entry will be the 0 morphism. The fact that d2 = 0 follows
exactly as in the closed case.

Example 4.7.4. Figure 4.7.2 shows the complex C(D), where D is the planar dia-
gram at the left of the figure. The morphisms su and sl are handle attachments
at the site of the upper and lower crossings.

Composition: Horizontal composition gives a functor Cobn,m×Cobm,l→Cobn,l.
We extend this functor bilinearly over the ring R = Z[q±1] to get a functor
H : Cobn,m⊗RCobm,l → Cobn,l which on objects is given by H(D⊗D ′) = DD ′.

Proposition 4.7.5. C(DD ′) = H(C(D)⊗C(D ′)).

Proof. At the level of objects, this follows just as in the proof of Proposition 4.3.3.
For the differential note that an edge in the cube of resolutions for DD ′ is either
of the form e : v0v

′
0 → v1v

′
0 where e : v0 → v1 is an edge of the cube of resolutions

for D, or of the form e ′ : v0v
′
0 → v0v

′
1, where e ′ : v ′0 → v ′1 is an edge in the

cube of resolutions for D ′. Edges of the first and second types contribute terms
respectively of the form d⊗ 1 , and 1⊗ d ′ to the differential. �

4.8. Bar-Natan’s category At this point, we have effectively generalized most of
the steps in the definition of Khovanov homology to tangles, but the complex
we have defined is not invariant (even up to homotopy equivalence) under the
Reidemeister moves. It remains to find an appropriate generalization of the final
step: applying the TQFT A. It turns out that the right thing to do is to pass to a
certain quotient of the category Add(Cobn,m).

Definition 4.8.1. Bar-Natan’s category CBNn,m is the quotient of Add(Cobn,m) by the
ideal generated by the following local relations. Suppose S = (S,P) is a morphism
in Cobn,m.
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• (Sphere relations) If a component of S is a sphere with one marked point,
S = S ′, where S ′ is the cobordism obtained by deleting this component.
If some component of S is a sphere with any number of marked points
other than one, S=0.

• (Neck-cutting relation) If A ⊂ S is an annulus, let Sr (resp. Sl) be the
diagram obtained by removing A replacing it with a pair of disks, and
putting a marked point on the left-hand (resp. right-hand) disk. Then
S = Sr + Sl.

= 0 = 1 = 0 + =

Figure 4.8.2. Relations in CBNn,m

Exercise 4.8.3. Check that these relations respects the q-grading on morphisms.

Definition 4.8.4. Suppose D ∈ Dn,m. We define the Khovanov bracket CKh(D) to
be the image of C(D) under the quotient functor Add(Cobn,m)→ CBNn,m.

Using the additional relations in CBNn.m, we will prove that the homotopy type
of CKh(D) is invariant under Reidmeister moves. As an example of how the
relations are applied we prove

Lemma 4.8.5. If any component of S contains two or more elements of P, then S = 0 in
CBN.

Proof. We can find an embedded disk in S containing two marked points. Ap-
ply the neck cutting relation to the boundary of this disk. Both the resulting
cobordisms contain a sphere with more than one marked point. �

At first glance, the relations in Definition 4.8.1 may seem somewhat myste-
rious. In fact, they are a natural extension of the TQFT A to the category of
tangles. To see this, consider the category Cob0,0, whose objects are closed 1-
manifolds embedded in R × I, and whose morphisms are marked cobordisms
between them. Note that any marked cobordism can be written as a composition
of ordinary cobordisms (without markings) and product cobordisms in which
one of the product cylinders is marked with a single dot.

We define a functor A : Cob0,0 → Z-mod. A agrees with A on objects and
unmarked morphisms. If Xi : D → D is a product cobordism marked with a
single point on the ith cylinder,

A(Xi) : A(D)→ A(D)

is given by multiplication by x on the ith tensor factor of A(S1).

Exercise 4.8.6. Check that A descends to a functor CBN0,0 → Z-mod.
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We now consider the structure of CBNn,m.

Proposition 4.8.7 (Eliminating Closed Circles). Suppose D ∈ Pn,m contains a small
closed circle c, and let D̃ be the same diagram, but with c removed. In CBNn,m, D is
isomorphic to qD̃⊕ q−1D̃.

The proposition categorifies the circle-removal relation 〈D〉 = (q+q−1)〈D̃〉 for
the Kauffman bracket.

Proof. We give the proof in the case where D̃ is empty; the argument in the
general case is the same. There are morphisms η : D → D̃ and ε : D̃ → D given
by addition of a 2-handle and 0-handle, respectively. Define morphisms

ϕ : D→ qD̃⊕ q−1D̃ and ψ : qD̃⊕ q−1D̃→ D

by

ϕ =

(
ηX

η

)
ψ =

(
ε Xε

)
where X : D→ D is the product cobordism with a single marked point. Then

ϕψ =

(
ηXε ηX2ε

ηε ηXε

)
The cobordism ηε is a closed sphere, so the sphere relations imply that the diag-
onal entries of this matrix are 1, and the off-diagonal entries are 0. Similarly

ψϕ = εηX+Xεη = 1D

by the neck-cutting relation. �

Corollary 4.8.8. CBNn,m is generated (as an additive category) by simple planar tangles.

= +

Figure 4.8.9. Trading genus for marked points

Next, we consider the morphisms of CBNn,m. Let S : D0 → D1 be a marked cobor-
dism between simple planar tangles. We say that S is simple if every component
of S is a disk with either 0 or 1 marked point.

Now suppose that S : D0 → D1 is an arbitrary marked cobordism. Applying
the neck-cutting relation as shown in Figure 4.8.9, we see that we can reduce
the genus of any component of S at the cost of adding marked points. Similarly,
if any component of S has more than one boundary component, we can use
the neck-cutting relation to separate these components. Finally, we can use the
sphere relations to eliminate any closed components. What remains is a linear
combination of simple cobordisms.
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D0

D1

Figure 4.8.10. The closed diagram D1D0. The planar diagram
D1 is obtained by reflecting D1 across a horizontal line.

If S = (S,P) is a simple marked cobordism, the components of S are deter-
mined up to isotopy by

∂S = D0 × 0∪Xn × 0× I∪D1 × 1∪Xm × 1× I ⊂ ∂(R× I× I).

We can identify ∂(R× I× I) with R2 − 0. Under this identification, ∂S is identified
with the diagram D1D0 shown in Figure 4.8.10. In particular, the number of disks
is given by the number of components in D1D0, and each disk can have either 0
or 1 marked point. In summary, we have proved

Proposition 4.8.11. If D0 and D1 are simple planar tangles, Homq(D0,D1) is a free
Z-module of rank 2r, where r is the number of components of D1D0.

The simple marked cobordism with maximal grading is (S, ∅), for which we
have q(S, ∅) = r− (m+ n)/2. It follows that as a graded module, Homq(D0,D1)

is naturally isomorphic to q(m+n)/2A(D1D0). In particular, Hom(D0,qiD1) = 0
for i < r− (m+ n)/2. It is easy to see that r 6 (m+ n)/2, with equality if and
only if D0 = D1, and that Hom(D0,D0) ' Z is generated by idD0 . Hence we
have proved

Corollary 4.8.12. CBNn,m is positively graded.

This corollary has two powerful consequences which make computations with
CKh(D) feasible. First, CBNn,m has the Krull-Schmidt property. Second, by Propo-
sition 4.6.3, any two minimal representatives of CKh(D) are isomorphic.

4.9. How to Compute Given a tangle diagram D, we can simplify CKh(D) by
the following steps. First, we apply the isomorphism of Proposition 4.8.7 to elim-
inate any objects of CKh(D) which contain closed circles. The result is a chain
complex whose objects are direct sums of simple tangles. Next, we use the re-
lations in Definition 4.8.1 to express all morphisms in the resulting complex in
terms of elementary morphisms, as in the proof of Proposition 4.8.11. Finally,
we repeatedly apply the Cancellation Lemma to eliminate any components of d
which correspond to the identity morphism.

As an example of this process, we prove that CKh is invariant under the first
Reidemeister move. Let R1 and R ′1 be the two diagrams for the Reidemeister I
move shown in Figure 1.1.6.
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Proposition 4.9.1. CKh(R1) ∼ CKh(R ′1), where ∼ indicates that the two complexes are
homotopy equivalent up to an overall shift of the homological and q-gradings.

(1 + q2)

[1]

[s]

q

[
η

ηX

]
[
ηs

ηXs

]

Proof. The complex CKh(R ′1) is shown in the upper row of the figure. The map
s is a 1-handle cobordism. The dashed arrows give an isomorphism between the
complexes in the upper and lower rows. The morphism ηs is a 1-handle followed
by a cancelling 2-handle, so it is isotopic to the identity. Hence we can cancel 〈 〉
on the left with 〈 〉 on the right, leaving only a summand of q2〈 〉 in homological
grading 1. This is CKh(R1) with the homological grading shifted by 1 and the
q-grading shifted by q2. �

Exercise 4.9.2. Show that CKh is invariant under the mirror image of this Reide-
meister move.

Invariance under the Reidemeister II move is similar.

Proposition 4.9.3. CKh(R2) ∼ CKh(R ′2).

q

q2 (1 + q2)

q

q2q

[sl]

[su]

[−sl]

[su]

[−sl]

q

[su]

∼=

[
ηsl

Xηsl

]

[
suXε suε

]

Proof. The complex CKh(R ′2) is shown on the left in the figure above. The sub-
scripts su and sl indicate whether the 1-handle should be added to the upper
or lower half of the figure. After eliminating the extra circle in the tangle at the
upper left, we arrive at the complex on the right-hand side of the figure. The
left-hand side of the complex is the same as the complex we considered for the
Reidemeister 1 move, so we can cancel the two objects labeled 〈 〉. Doing this
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does not affect the morphism on the upper arrow, so we can cancel the two objects
labeled q2〈 〉, leaving only 〈 〉 in the lower-right. �

When we compute CKh of a tangle represented by a braid, it is often simpler
to represent tangles by elements of TLn, rather than drawing pictures. Under this
correspondence, we have

CKh(σ1) = 1→ qU1 and CKh(σ−1
1 ) = U1 → q1.

Example 4.9.4. Let us compute CKh of a full twist on two strands. Using Propo-
sition 4.7.5, we see that

CKh(σ1)
2 = CKh(σ1)⊗CKh(σ1) = (1→ qU1)⊗ (1→ qU1)

Expanding this out gives

qU1 q2U2
1 qU1 (q+ q3)U1

1 qU1 1 qU1

su 1⊕Xu

sl

su

−sl sl

su

1⊕Xl

where all the maps have already been computed in the proofs of Propositions 4.9.1
and 4.9.3. Cancelling the identity map in the top row, we obtain

CKh(σ2
1) ∼ 1 s−→ qU1

Xl−Xu−−−−−→ q3U1.

Since the saddle cobordism has only one component, Xus = Xls and d2 = 0 as it
should.

We could do the same thing to compute CKh(σ3
1), but the following lemma

makes the computation a little easier:

Lemma 4.9.5. If C,C ′ and C1 are complexes and C ∼ C ′, then C⊗C1 ∼ C ′ ⊗C1.

The proof is left to the reader. Writing

CKh(σ3
1) = CKh(σ2

1)⊗CKh(σ1)

and applying the lemma, we see that CKh(σ3
1) is equivalent to the complex below:

qU1 (q+ q3)U1 (q3 + q5)U1

1 qU1 q3U1

The complex in the top row gives CKh(D), where D is U1 with two Reidemeis-
ter one moves applied to it. By R1 invariance, we see that we can cancel all terms
in the top row except q5U1. The resulting complex is

CKh(σ3
1) ∼ 1 s−→ qB1

Xl−Xu−−−−−→ q3U1
Xl+Xu−−−−−→ q5U1.

This technique was used to great effect by Bar-Natan and Green in their pro-
gram [4], which made a revolutionary advance in ability to compute Khovanov
homology.
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Exercise 4.9.6. Show that in general CKh(σn1 ) ∼

1 s−→ qU1
Xl−Xu−−−−−→ q3U1

Xl+Xu−−−−−→ q5U1
X1−X2−−−−→ . . .q2n−3U1

Xl±Xu−−−−−→ q2n−1U1

where the boundary map alternates between Xl −Xu and Xl +Xu. By consider-

ing one closure of the tangle σn1 , compute the Khovanov homology of the torus
knot T(2, 2k+ 1) and the torus link T(2, 2k). Show that the complex obtained by
taking the other closure of the tangle correctly computes Kh( ).

We can now check the invariance of CKh under the third Reidemeister move.

Proposition 4.9.7. CKh(σ1σ2σ1) = CKh(σ1σ2σ1).

Proof. We compute

CKh(σ1σ2) = (1→ qU1)⊗ (1→ qU2)

= 1→ q(U1 +U2)→ q2U1U2

where every matrix entry in each boundary map is a saddle cobordism. Thus
CKh(σ1σ2σ1) has the form shown below:

qU1 (q+ q3)U1 + q
2U2U1 q3U1

1 q(U1 +U2) q3U1U2

Consider the morphisms F : qU1 → qU1 and G : q3U1 → q3U1 ap-
pearing in the upper row. The morphism F has already been studied
in our calculation of CKh(σ2

1), where we saw it is the identity. G is
given by the composition of the map ε : q3U1 → q2D, where D is the diagram
to the right with the 1-handle cobordism indicated by the dotted line. This is the
addition of a 0-handle followed by a cancelling 1-handle, so the composition is
isotopic to the identity.

It follows that we can cancel all terms in the upper row except U1U2. We are
left with a complex

1→ q(U1 +U2)→ q2(U1U2 +U2U1)

in which every possible map is given (up to sign) by a saddle. But this complex
is invariant under the reflection which switches U1 and U2. Hence the same
argument shows it is isomorphic to CKh(σ2σ1σ2). �

Theorem 4.9.8. If D and D ′ two diagrams having the same tangle, then we have
CKh(D)∼ CKh(D′).

Proof. We’ve already checked the statement for the three pairs of Reidemeister
diagrams. The general case follows exactly as in the proof of Proposition 4.3.4,
using Proposition 4.7.5 and Lemma 4.9.5. �
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4.10. Connections and Further Reading The Khovanov homology of tangles
serves as a template for many subsequent developments in categorification. For
the beginner, it is worth taking the time to understand it well; Bar-Natan’s pa-
per [5] is still a good reference. One important feature which we have not touched
on in this section is maps induced by tangle cobordisms. The proof of (projective)
functoriality is much easier in this setting [5, 41] than if we restrict ourself to the
context of link cobordisms.

In a different direction, Ozsváth and Szabó [62,63] have developed a knot Floer
analog of the Khovanov complex of a tangle. The underlying categories are more
complicated than the Bar-Natan category, and it seems there is still much to be
learned by studying them.

Finally, we mention the recent work of Kotelskiy, Watson, and Zibrowius, [47],
who represent the Khovanov complex of a tangle as an object in the Fukaya cate-
gory of the 4-punctured sphere.

5. HOMFLY-PT Homology

The similarity between the skein relations for the Jones and Alexander polyno-
mials is hard to miss, and it’s natural to ask if they have a common generalization.
In fact, this question is so natural that it was answered by at least eight people
working in five different groups (Freyd-Yetter, Hoste-Lickorish, Morton, Ocneanu,
and Pryztycki-Traczyk) not long after Jones announced the existence of his new
polynomial.

Theorem 5.0.1 (HOMFLY-PT [24] [64]). There’s an invariant which assigns to an
oriented link L ⊂ S3 a rational function PL(a,q) ∈ Z(a,q) which satisfies the skein
relation

aP
( )

− a−1P
( )

= (q− q−1)P
( )

.

The function PL is known as the (normalized) HOMFLY-PT polynomial. It is
completely determined by the skein relation plus the normalization P( ) = 1. By
applying the skein relation to the one-crossing diagram of the unknot, we find
that

P( ) =
a− a−1

q− q−1

and more generally, that

P( n) =

(
a− a−1

q− q−1

)n−1

.

Notation: We write

{n} =
aq−n − a−1qn

q− q−1 and [n] =
qn − q−n

q− q−1 .

so that P( n) = {0}n−1. Note that {n}|a=qk = [k − n]. The polynomial [n] is
known as quantum n.
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As with the Jones polynomial, there’s also an unnormalized version PL which is
defined by

P(L) = P(L)

(
a− a−1

q− q−1

)
.

Exercise 5.0.2. Use the skein relation to show that (q−q−1)|L|P(L) ∈ Z[a±1,q±1].
In particular, if K is a knot, P(K) ∈ Z[a±1,q±1].

Our goal in this lecture is to discuss one way of defining PL (following the
method of Jones [36] and Ocneanu, and then outline its categorification, due to
Khovanov and Rozansky.

5.1. Braid Closures Given σ ∈ Brn, we can form the braid closure σ, which is an
oriented link in S3, as illustrated in the figure above. By sliding σ “around the
circle” as shown, we see that στ = τσ; in other words, that the operation of taking
the closure is invariant under conjugation in the braid group.

σ

σ τ τ σ

=

Figure 5.1.1. From the schematic diagram of closure of the braid
σ above we see that στ = τσ below.

The significance of this operation stems from the following two theorems:

Theorem 5.1.2 (Alexander). Every oriented link L ⊂ S3 can be written as L = σ for
some σ ∈ Brn.

Note that n depends on L, and that neither n nor σ are uniquely determined
by L. This failure of uniqueness is described by Markov’s theorem:

Theorem 5.1.3 (Markov). If σ ∈ Brn, σ ′ ∈ Brn ′ have isotopic closures, then σ and σ ′

are related by a sequence of the following moves:

1) (Conjugation) Replace σ ∈ Brm with τστ−1, where τ ∈ Brm.
2) (Stabilization) Replace σ ∈ Brm with σσ±1

m ∈ Brm+1 or vice-versa.
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Next, we recall the Temperly-Lieb algebra TLn from the previous lecture. If
U ∈ TLn is a basis element corresponding to a crossingless planar diagram, we
can form its closure U just as we formed the closure of a braid. We define a map
Tr : TLn → Z[q±1] by setting

Tr(U) = (q+ q−1)|U|

if U is a crossingless planar tangle, and extending linearly to all of TLn. This map
is called the Jones trace. Since UU ′ = U ′U, it satisfies the defining property of a
trace: Tr(UU ′) = Tr(U ′U).

Using the homomorphism Ψ2 : Brm → TLm defined in exercise 4.3.7, we see
that the unnormalized Jones polynomial can be expressed as

V(σ) = TrΨ2(σ).

5.2. The Hecke algebra

Definition 5.2.1. The Hecke algebra of type An is the algebra defined over the
ring R = Z[q±1] by the presentation

Hn =

〈
T1, . . . Tn−1

∣∣∣∣∣
TiTj = TjTi |i− j| > 1
TiTi+1Ti = Ti+1TiTi+1

T2
i = (q− q−1)Ti + 1

〉
.

There are obvious homomorphisms,

Brn
Ψ−→ Hn

ρ−→ Z[Sn]

given by Ψ(σi) = Ti and ρ(Ti) = si, where Sn is the nth symmetric group, which
has a presentation in terms of elementary transpositions si for i = 1, . . . ,n− 1 as

Sn =

〈
s1, . . . sn−1

∣∣∣∣∣
sisj = sjsi |i− j| > 1
sisi+1si = si+1sisi+1

s2
i = 1

〉
.

The presentation of Hn above was chosen to make this sequence of homomor-
phisms obvious. It is also useful to work with the alternate generators Bi = q− Ti,
with respect to which the presentation has the form

Hn =

〈
B1, . . .Bn−1

∣∣∣∣∣
BiBj = BjBi |i− j| > 1

BiBi+1Bi −Bi = Bi+1BiBi+1 −Bi+1

B2
i = (q+ q−1)Bi

〉
.

With this set of generators, it’s clear there is a homomorphism p2 : Hn → TLn

given by p2(Bi) = Ui, and that the following diagram commutes:

Brn

Hn TLn.

Ψ
Ψ2

p2

Here Ψ2 is basically the map discussed in section 4.3, but with q and q−1 switched.
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In analogy with the Jones trace, we have the Jones-Ocneanu trace on the Hecke
algebra:

Theorem 5.2.2 (Oceanu). n There is a unique family of R-linear maps

Trn : Hn → Z[a±1,q±1, (q− q−1)−1]

satisfying the following properties

1) Trn+1 BB
′ = Trn+1 B

′B

2) Trn+1 ι(B) = {0}Trn(B)
3) Trn+1 ι(B)Bn = {1}Trn(B)
4) Tr0(1) = 1.

where ι : Hn → Hn+1 is the inclusion which sends Bi 7→ Bi.

We can use the Jones-Ocneanu trace to give a definition of the HOMFLY-PT
polynomial.

Definition 5.2.3. If σ ∈ Brn, we define P(σ) = a−w(σ) Trn Ψ(σ).

By Alexander’s theorem, any link in S3 can be represented as a braid closure.
To see that P is well-defined, we use Markov’s theorem, which says that it is
enough to check that P is invariant under the two Markov moves.

Exercise 5.2.4. Use the properties of the Ocneanu trace to check that P is invariant
under the Markov moves. Next, use the quadratic relations in Hn to show that
if D is any diagram of a braid closure, then P(D) satisfies the HOMFLY-PT skein
relation.

5.3. Structure of Hn In this section, we give a proof of Theorem 5.2.2. Along the
way, we must establish some facts about the structure of Hn.

Let Wn be the set of all words in the letters 1, 2, . . .n− 1. If I = i1i2 · · · ik ∈Wn,
we let `(I) = k be its length. We write s(I) = si1si2 · · · sik ∈ Sn and similarly for
B(I) = Bi1Bi2 · · ·Bik ∈ Hn. If j 6 i, We write Ij,i = j(j+ 1)(j+ 2) · · · (i− 1); note
that Ii,i is the empty word. It is easy to see that s(Ij,i)(i) = j.

Definition 5.3.1. A reduced word is a word of the form Ijn,nIjn−1,n−1 · · · Ij1,1,
where jk 6 k for all 1 6 k 6 n.

Let Rn = {I ∈Wn | I is reduced}.

Lemma 5.3.2. Every s ∈ Sn has a unique expression as s = s(I), where I ∈ Rn.

Proof. By induction on n. The result for n = 1 is obvious. Suppose the lemma
holds for n − 1, and let s ∈ Sn. Let j = s(n). Then s(Ij,n)−1s(n) = n, so we
can view s(Ij,n)

−1s as an element of Sn−1. By the induction hypothesis we can
write s(Ij,n)−1s = s(I ′), where I ′ is a reduced word in the letters 1, . . .n− 2. Then
s = s(Ij,nI

′), and Ij,nI ′ is a reduced word in n− 1 letters. For uniqueness, note
that if s = s(I), where I is a reduced word, we must have jk = s(k). �
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This lemma has an easy graphical interpretation. Any s ∈ Sn can be repre-
sented by a string diagram, which is a braid diagram in which we have forgot-
ten the information about overcrossings and undercrossings, and the different
strands are allowed to slide freely through each other. The string diagram associ-
ated to the elementary permutation si is shown in the figure below.

1

i− 1
i

i+1

n

i+2

Given a string diagram for a permutation s, suppose the strand that ends at n
starts at position in. We take this strand and pull it down and to the right, so that
the initial part of the word associated to the new diagram reads inin+1 . . .n− 1.
The rest of the diagram consists of a diagram on n− 1 strings together with a
single string at the bottom. Repeat this process gives the desired reduced word.
For example, the figure below shows that we can write the permutation given in
cycle notation by (134)(2) as s1s2s3s1.

Next, we prove an analogous theorem for Hn. Let

Bn,k = span {B(I) | I ∈ Rn and `(I) 6 k} ⊂ Hn.

Lemma 5.3.3. If I ∈Wn, B(I) ∈ Bn,`(I).

Proof. The proof is a double induction. First, we induct on n. The case n = 1 is
trivial, so suppose the statement holds for 1, . . . ,n− 1. We show that it holds for
n by induction on `(I). Again, the case where `(I) = 0 is trivial, so suppose the
statement holds whenever `(I) < k. If `(I) = k, write I = I ′ik. By the induction
hypothesis, B(I ′) ∈ Bn,k−1, so it suffices to show that if I is a reduced word of
length k− 1, then B(I)Bik ∈ Bn,k.

Now suppose that I is a reduced word of length k− 1 and write I = Iin,nI1,
where I1 ∈ Rn−1. If ik < n− 1, then by the induction hypothesis

B(I1)Bik =
∑

J∈Rn−1,`(J)6`(I1ik)

cJB(J).
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Now if J ∈ Rn−1, Iin,nJ ∈ Rn, and if `(J) 6 `(I1ik), then `(Iin,nJ) 6 `(Iik). Hence

B(I)Bik =
∑
J

cJB(Iin,nJ) ∈ Bn,k.

Thus it remains to consider the case where ik = n − 1. In this case, write
I = Iin,nIin−1,n−1I

′′, where I ′′ ∈ Rn−2. If I ′′ is nonempty, we can commute
ik = n− 1 with the last letter of I ′′ to write B(I)Bik = B(Ĩ)Bj where j < n− 1. By
the inner induction hypothesis, B(Ĩ) ∈ Bn,k−1, so we have reduced to the case of
the previous paragraph.

We now suppose that the word I ′′ is empty. In this case B(I) can be written
in one of the following forms: a) B(I) = B(Iin−1,n−1), b) B(I) = B(Iin,n), or
c) B(I) = B(I0)Bn−1Bn−2, where I0 ∈ Wn−2. In case a), B(I)Bn−1 = B(Iin−1,n),
and in case b) B(I)Bn−1 = (q+ q)−1B(I). Finally, in case c)

B(I)Bn−1 = B(I0)Bn−2Bn−1Bn−2 −B(I0)Bn−2 +B(I0)Bn−1.

The first term on the right is in Bn,k by the argument in the second paragraph,
and the other two terms are in Bn,k by the induction hypothesis. This proves the
claim. �

Proposition 5.3.4. The set Bn = {B(I) | I ∈ Rn} is a basis for Hn.

Proof. By Lemma 5.3.2, Bn contains exactly |Sn| = n! elements, and it spans Hn
by Lemma 5.3.3. On other hand, there is a surjective homomorphism from, Hn
to Z[Sn], so any basis for Hn must contain at least n! elements. �

Proof of Theorem 5.2.2. Suppose Trn has been defined; we will inductively con-
struct Trn+1. We first define Trn+1 on the elements of the basis Bn+1; by linearity,
this determines Trn+1 on all of Hn+1. Now every element of Bn+1 is either a) of
the form a ∈ Hn or b) of the form aBnb, where a,b ∈ Hn. (For simplicity, we
have dropped ι from the notation.) In order to satisfy properties 1)-3), we must
have Trn+1 a = {0}Trn a and Trn+1 aBnb = {1}Trn(ab). Hence Trn+1 is uniquely
determined.

We define Trn+1 on Bn+1 by these relations and extend linearly to Hn+1. With
this definition, it is easy to see that Trn+1 a = {0}Trn a whenever a ∈ Hn, and
Trn+1 aBnb = {1}Trn ab whenever a,b ∈ Hn. It therefore remains to check
that Trn+1 xy = Trn+1 yx for x,y ∈ Hn+1. To do this, it is enough to check
that Trn+1 xBi = Trn+1 Bix for all x ∈ Bn+1. For i < n, this follows from the
induction hypothesis.

It remains to prove that Trn+1 xBn = Trn+1 Bnx. If x ∈ Hn, this follows from
the definition. Otherwise, we can write x = aBnb, for B,B ′ ∈ Hn. We must check
that Trn+1 BnaBnb = Trn+1 aBnbBn. We consider four cases:

(1) a,b ∈ Hn−1.
(2) a ∈ Hn−1, b = b1Bn−1b2 with b1,b2 ∈ Hn−1.
(3) a = a1Bn−1a2 with a1,a2 ∈ Hn−1, b ∈ Hn−1.
(4) a = a1Bn−1a2,b = b1Bn−1b2 with a1,a2,b1,b2 ∈ Hn−1.
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In case (1), a and b commute with Bn, so the result is obvious. In case (2), we
compute

Trn+1 BnaBnb = [2]{1}Trn ab = [2]{1}2 Trn−1 ab1b2

while

Trn+1 aBnbBn = Trn+1 aBnb1Bn−1b2Bn

= Trn+1 ab1BnBn−1Bnb2

= Trn+1 ab1(Bn−1BnBn−1 −Bn−1 +Bn)b2

= ([2]{1}2 − {0}{1}+ {1}{0})Trn−1 ab1b2

= 2]{1}2 Trn−1 ab1b2

so the result holds. Case (3) is similar. Finally, for case 4, we compute

Trn+1 aBnbBn = Trn+1 ab1BnBn−1Bnb2

= Trn+1 ab1(Bn−1BnBn−1 −Bn−1 +Bn)b2

= ([2]{1}− 1)Trn ab+ {1}2 Trn−1 a1a2b1b2

A similar computation shows

Trn+1 BnaBnb = ([2]{1}− 1)Trn ab+ {1}2 Trn−1 a1a2b1b2

which concludes the proof. �

5.4. The cube of resolutions The definition of the HOMFLY-PT polynomial we
have given in the preceding sections is modeled on the definition of the Jones
polynomial via the Temperly-Lieb algebra. We can rephrase this definition to
more closely resemble the Kauffman state model. From section 5.2, we see that

(5.4.1) Ψ(σi) = q−Bi Ψ(σ−1
i ) = q−1 −Bi.

1

i− 1
i

i+1

n

i+2

Figure 5.4.2. Bi is represented by a thick edge.

Graphically, we represent Bi by a diagram with a thick edge, as shown in
Figure 5.4.2. The resulting diagrams are known as MOY diagrams, and were first
introduced by Murakami, Ohtsuki, and Yamada.

Suppose that c is a crossing in a braid diagram D corresponding to an appear-
ance of σ±1

i in the braid word. We consider two ways to “resolve” c: the oriented
resolution (corresponding to 1 ∈ Hn and the “thick edge” corresponding to Bi.
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We call one of these the 0-resolution, and the other the 1-resolution. Which is
which depends on the sign of the crossing, as shown in the figure below.

01

0 1

(Warning: if we replace the thick edge by the unoriented resolution we get a
convention for 0 and 1 resolutions which is exactly opposite of the one we used
in Khovanov homology.)

Just as in Khovanov homology, we can form the cube of resolutions of D, as
illustrated below.

q2

−q

−q

To each vertex v of the cube we associate a planar MOY diagram Dv, which
we view as representing an element Dv ∈ Hn. Using equation 5.4.1, we see that

Ψ(D) = qn+(D)
∑
v

(−q)−|v|Dv.

If D is an n-strand MOY diagram, we can form its closure D exactly as we
formed the closure of a braid. In analogy with the Kauffman bracket, we define
〈D〉 = TrnD. We can evaluate the trace by applying the MOY relations shown in
the next figure:

= {0}0) = {1}1)
= [2]2)

− = −3)

MOY relations 0) and 1) are properties 2) and 3) of the trace, while relations 2)
and 3) are the defining relations of the Hecke algebra. For example, we have

〈B2
1〉 = [2]〈B1〉 = [2]{1}〈 〉 = [2]{1}{0}.

Finally, comparing with Definition 5.2.3, we see that

P(D) = a−w(D)qn+(D)
∑
v

(−q)−|v|〈Dv〉.
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5.5. The Kazhdan-Lusztig basis We’ll use the cube of resolutions in the previ-
ous section to categorify the HOMFLY-PT polynomial. Before we do so, we must
discuss one more thing about the Hecke algebra.

The algebra H2 has a (rather trivial) filtration by ideals: we have B2
1 = [2]B1, so

(B1) ⊂ (1) = H2. More interestingly, a similar phenomenon holds for H3. Define

Bw = B1B2B1 −B1 = B2B1B2 −B2.

If we use the basis

{1,B1,B2,B12 := B1B2,B21 := B2B1,Bw}

for the algebra H3, we see that all the structure constants for multiplication have
positive coefficients and there is an increasing sequence of ideals

(Bw) ⊂ (B1,B2) ⊂ (1).

Kazhdan and Lusztig [38] defined a similar basis for every Hn, and conjec-
tured that the structure constants defining the multiplication in this basis were
all positive. This conjecture was first proved by Beilinson-Bernstein and Brylinski-
Kashiwara, and the basis is now known as the Kazhdan-Lusztig basis. We sum-
marise some relevant facts about it in the following:

Theorem 5.5.1 ( [7, 11, 38]). Hn has a basis {Bs | s ∈ Sn} such that

1) BsBt =
∑
u C

u
stBu, where Cust ∈N[q±1].

2) {Bs | `(s) 6 k} is a basis for Bn,k.
3) There is a natural map | · | : Sn → Π(n) (the set of partitions of n) such that the

set Iλ = 〈Bs | |s| � λ〉 is an ideal in Hn.

The partial order � on Π(n) is the usual one: λ � µ if the for all k the sum of
the k largest elements of λ is > the sum of the k largest elements of µ. The map
Sn → Πn is much used in the representation theory of Sn, e.g. in the Robinson-
Schensted correspondence [8].

Exercise 5.5.2. Use the MOY rules to compute Tr3 of each of the Kazhdan-Lusztig
basis elements for H3. You should be able to express the answers nicely in terms
of {i} for various values of i. Can you guess where the pattern you see in the
answers comes from?

5.6. Soergel Bimodules The proof of Theorem 5.5.1 is one of the first appear-
ances of categorification in representation theory. It proceeds by finding a graded
monoidal category Cn which is generated by objects {Bs | s ∈ Sn} which satisfy

Bs ⊗Bt '
⊕
u

Cus,tBs.

Since this is the case, we must have Cus,t ∈ N[q±1]. There are many different
ways to descibe such a category, but the simplest is due to Soergel [75]. The
category which he constructed is known as the category of Soergel bimodules,
and is denoted by SBimn. This category will play the same role in our definition
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of the HOMFLY-PT complex of a braid as Bar-Natan’s category in the definition
of the Khovanov complex of a tangle.

The objects of SBimn are graded Rn-Rn bimodules over the graded C-algebra
Rn = C[X1, . . . ,Xn]. (Saying that B is a bimodule over a C-algebra means that
B is vector space over C, and the C action on both left and right is given by
scalar multiplication.) The grading on Rn is given by q(Xi) = 2 for all i, and the
monoidal structure on SBimn is given by tensor product of bimodules.

Since Rn is commutative, any bimodule over Rn can be thought of as a module
over the larger polynomial ring Ren := Rn⊗C Rn ' C[X1, . . . ,Xn, Y1, . . . Yn], where
the Xi’s act by multiplication by Xi on the left, and the Y ′is as multiplication by
Xi on the right.

Example 5.6.1. Rn is a bimodule over itself, where the left action of Rn is given
by multiplication on the left, and the right action is given by multiplication on
the right. (Of course, Rn is commutative, so which side we multiply on doesn’t
actually matter.) As a module over Ren, Rn = Ren/(X1 − Y1, . . .Xn − Yn).

The symmetric group Sn acts on Rn by permuting the Xi’s. Let Rsin ⊂ Rn be
the ring of elements which are invariant under the elementary permutation si.
R
si
n is itself a polynomial ring:

R
si
n ' C[X1, . . . ,Xi−1, ei1, ei2,Xi+2, . . . ,Xn].

where ei1 = Xi + Xi+1 and ei2 = XiXi+1 are the elementary symmetric functions
in Xi and Xi+1. Viewed as a module over Rsin , Rn is free of rank 2, with basis
{1,Xi}. Hence Rn ' (1 + q2)Rsin as graded Rsin -modules. As usual, the notation
q2R

si
n indicates a grading shift: 1 ∈ Rsin has grading 0, but the same element in

q2R
si
n has grading 2.

Definition 5.6.2. The elementary Soergel bimodule Bi := Bsi is defined to be

Bi = q
−1Rn ⊗Rsin Rn.

Viewed as a module over Ren, we have

Bi = q
−1Ren/(e

i
1(X) − e

i
1(Y), e

i
2(X) − e

i
2(Y))

= q−1Ren/((Xi +Xi+1) − (Yi + Yi+1),XiXi+1 − YiYi+1)

= q−1Ren/(Xi +Xi+1 − Yi − Yi+1, (Yi −Xi)(Yi −Xi+1))

The Bi’s satisfy the relations given by the Hecke algebra.

Proposition 5.6.3. B2
i ' (q+ q−1)Bi as Rn-Rn bimodules.

Proof. We prove this for B1 ∈ SBim2; the general case is completely analogous.
Write R = R2, R ′ = Rs

1

2 . We have

B1 ⊗B1 ' q−2(R⊗R ′ R)⊗R (R⊗R ′ R)

' q−2R⊗R ′ R⊗R ′ R

' q−2R⊗R ′ (1 + q2)R ′ ⊗R ′ R
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' (q−1 + q)q−1R⊗R ′ R ' (q−1 + q)B1 �

This proof is algebraically slick, but can be unilluminating if you’ve never seen
something like it before. A more hands-on approach is to work with modules
over Ren. Suppose B, B ′ are Rn-Rn bimodules, and that B ' C[X, Y]/(fi(X, Y)),
B ′ ' C[Y, Z]/(gj(Y, Z)). Then

B⊗B ′ ' C[X, Y, Z]/(fi(X, Y),gj(Y, Z)),

which we view as a module over C[X, Z] = Ren.

Example 5.6.4. From this perspective, we have

B2
1 = q−2C[X1,X2, Y1, Y2,Z1,Z2]/(R)

viewed as a module over C[X1,X2,Z1,Z2], where the ideal of relations R is given
by

R = (ej(X) − ej(Y), ej(Y) − ej(Z))(j = 1, 2)

= (ej(X) − ej(Y), ej(X) − ej(Z))

viewed as a module over C[X1,X2,Z1,Z2]. The relations X1 + X2 = Y1 + Y2 and
X1X2 = Y1Y2 can be rewritten as Y2 = X1 + X2 − Y1 and Y2

1 = (X1 + X2)Y1 − X1X2.
We use these relations to eliminate Y2 and Y2

1 , so

B2
1 = q−2(B⊕ Y1B) = (q+ q−1)q−1B

where

B = C[X, Z]/(ej(X) − ej(Z)) (j = 1, 2)

= qB1.

The relation in Proposition 5.6.3 corresponds to the quadratic relation in the
Hecke algebra. It is easy to see that the analog of the far-commutativity relation
is satisified: BiBj ' BjBi if |i− j| > 1. To prove the analog of the braid relation,
we define a bimodule Bw over R3 by Bw = q−3R3 ⊗

R
S3
3
R3, where RS3

3 denotes
the ring of invariants under the action of S3 on R3 by permuting the coordinates.
Since RS3

3 is a polynomial ring in the elementary symmetric functions e1, e2, e3,
we have

Bw = q−3Re3/(ej(X) = ej(Y)) (j = 1, 2, 3).

Proposition 5.6.5. B1B2B1 ' Bw ⊕B1 as R3-R3 bimodules.

Proof. (Sketch) B1B2B1 = Re3 [a,b, c]/I, where I is the ideal generated by the rela-
tions

X1 +X2 = a+ b X1X2 = ab

b+X3 = c+ Y3 bX3 = cY3

a+ c = Y1 + Y2 ac = Y1Y2

where the variables corresponding to different edges are shown in the figure
below.
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Y1

Y2

Y3X3

X2

X1
a

b c

We can use the linear relations to eliminate a and c, and one of the quadratic
relations to eliminate b2. View B1B2B1 as a module over Re3 , and let M1 and M2

be the submodules generated by 1 and b− X3, respectively. Then as a module
over Re3 , B1B2B1 ' M1 ⊕M2 . It is easy to check that the maps Re3 → M1

and Re3 → M2 given by p 7→ p and p 7→ (b− X3)p factor through Bw and B1

respectively. Finally, we note that as modules over R3, B1B2B1 is free of rank
8, Bw is free of rank 6, and B1 is free of rank 2. It follows that we must have
M1 ' Bw and M2 ' B1. �

Definition 5.6.6. A Bott-Samuelson bimodule is a Rn-Rn bimodule obtained by tak-
ing tensor products of the Bi’s. A Soergel bimodule is a direct summand of a
Bott-Samuelson bimodule.

The category SBimn is the subcategory of the category of Rn-Rn bimodules
whose objects are Soergel bimodules. Its split Grothendieck group K(SBimn) is
the Z[q±1]-module generated by objects of SBimn, modulo relations of the form
[B⊕B ′] = [B] + [B ′] and [qB] = q[B]. Tensor product on SBimn makes K(SBimn)
into a ring: [B][B ′] = [B⊗B ′]. Propositions 5.6.3 and 5.6.5 imply that there is a
homomorphism ρ : Hn → K(SBimn) given by ρ(Bi) = [Bi]. Soergel showed that
this map is an isomorphism.

Theorem 5.6.7 (Soergel [75]). There are indecomposable Soergel bimodules Bs (s ∈ Sn)
which generate SBimn and satisfy ρ(Bs) = [Bs].

Exercise 5.6.8. Let Bwn be the Rn − Rn bimodule defined by

Bwn = q−n(n−1)/2Rn ⊗RSnn Rn.

Show that BiBwn = [2]Bwn . What is BwnBwn?

Importantly for us, SBimn satisfies the analog of Corollary 4.8.12.

Theorem 5.6.9 ([75]). SBimn is a positively graded category; {Bs | s ∈ Sn} is a set of
positive generators.

5.7. Hochschild homology and cohomology

Definition 5.7.1. Suppose that R is a C-algebra. If M is an R-R bimodule, its
Hochschild homology and cohomology are defined as HH∗(M) = TorR

e

∗ (R,M) and
HH∗(M) = Ext∗Re(R,M).

Here Tor, as usual, denotes the derived tensor product:

TorR
e

i (R,M) = Hi(CR ⊗M) = Hi(R⊗CM)
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where CR and CM are free resolutions of R and M as Re modules. Similarly, Ext
denotes derived Hom. If R is a graded ring and M is a graded bimodule, then
HH∗(M) and HH∗(M) are graded as well.

A priori, HH∗(M) should be a module over Re, or equivalently, an R-R bimod-
ule. However the left and right actions of R on R are the same, which implies that
the same is true for the left and right actions of R on HH∗(M) and HH∗(M), so
we can view them as R modules. Hence we have functors

HH∗,HH∗ : R-gMod-R→ R-gMod,

where R-gMod-R denotes the category of graded R-R bimodules. Note that HH∗
and HH∗ are both covariant functors of M.

When R = Rn is a polynomial ring, the situation simplifies considerably, since
R has a very simple resolution as an Re-module. Namely, if K(Xi − Yi) is the
short complex q2Re

Xi−Yi−−−−→ Re, then the Koszul complex

CRn =

n⊗
i=1

K(Xi − Yi)

is a free resolution of R as a module over Re.

Example 5.7.2. HH∗(Rn) = H∗(CRn ⊗ Rn). Since Xi = Yi in Rn,

CRn ⊗ Rn ' (q2Rn
0−→ Rn)

⊗n

where the underlined terms are in homological grading 0, and the differential
lowers the homological grading by 1. The differential in this complex is trivial, so
HH∗(Rn) = Rn ⊗Λ∗(a1, . . . ,an), where q(ai) = 2 and the homological grading
is given by the degree in the exterior algebra.

To compute the Hochschild cohomology, we tensor with the dual chain com-
plex C∗Rn . We have

C∗Rn ⊗ Rn ' (Rn
0−→ q−2Rn)

⊗n

where the underlined terms are in homological grading 0 and the differential
raises grading by 1. Again, the cohomology is an exterior algebra tensored
with Rn.

Example 5.7.3. Let n = 2. To compute HH∗(B1), we use a free resolution of B1,
which is given by the Koszul complex

C(B1) = (q2Re2
Y1+Y2−X1−X2−−−−−−−−−−→ Re2 )⊗ (q4Re2

Y1Y2−X1X2−−−−−−−−→ Re2 ).

Then HH∗(B1) = Hom(Rn,C(B1)) = Rn⊗Λ∗(a1,a2), but now we have q(a1) = 2,
q(a2) = 4.

Proposition 5.7.4. If M and N are Rn − Rn-bimodules, then

(1) HH∗(M⊗N) ' HH∗(N⊗M)

(2) Hom(N,M) ' HH0(M⊗Nop) where Nop denotes N with the right and left
actions reversed.
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Proof. We prove the first part; the second follows from standard properties of
Ext. Let CM and CN be free resolutions of M and N. We view them as being
defined over polynomial rings with variables X, Y and X ′, Y ′, respectively. A free
resolution of M⊗N is given by CM⊗C CN/(Y = X ′). Tensoring this with R gives
CM ⊗C CN/(Y = X ′,X = Y ′)). HH∗(M⊗N) is the homology of this complex.
Similarly, a free resolution of N⊗M is CM ⊗C CN/(Y

′ = X), so HH∗(M⊗N) is
also the homology of CM ⊗C CN/(Y = X ′,X = Y ′)). �

The first property in the proposition says that HH∗ behaves like a trace. In fact,
Khovanov showed that HH∗ categorifies the Jones-Ocneanu trace. If B ∈ SBimn
we define

P(B) = (aq)−n
∑

(−a2q2)i qdimHHi(B).

Theorem 5.7.5 ([43]). If B ∈ SBimn, P(B) = Trn[B], where [B] denotes the image of
B in K(SBimn) ' Hn.

Proof. It is enough to check the equality when B is a Bott-Samuelson bimodule.
Since the Jones-Ocneanu trace satisfies and is determined by the MOY rules, it
suffices to check that P satisfies the MOY rules as well. Rules 2) and 3) are a direct
consequence of Propositions 5.6.3 and 5.6.5.

For MOY 0), suppose that B is a Bott-Samuelson bimodule in SBimn, and let
ι(B) be its image in SBimn+1. If CB is a free resolution of B over Ren, then

CB ⊗
(
q2Ren+1

Yn+1−Xn+1−−−−−−−−→ Ren+1

)
will be a free resolution of ι(Bn) over Trn+1. After taking the tensor product with
Rn+1, this becomes

(CB ⊗Ren Rn)⊗C

(
q2C[Xn+1]

0−→ C[Xn+1]
)

.

It follows that HH∗(ι(B)) = HH∗(B)⊗C C[Xn+1]⊗Λ∗(a1) so, as desired,

P(ι(B)) = a−1q−1P(B)

(
q2 − a2q2

1 − q2

)
= {0}P(B).

The proof for MOY 1) is similar: ι(B)⊗Bn has a free resolution

CB⊗
(
q2Ren+1

Yn−Y
′+Yn+1−Xn+1pt−−−−−−−−−−−−−−→ Ren+1

)
⊗
(
q4Ren+1

(Xn+1−Yn+1)(Xn+1−Y
′)

−−−−−−−−−−−−−−−−→ Ren+1

)
.

After tensoring with Rn, this becomes

CB ⊗Ren

(
q2C[Y ′]

Yn−Y
′

−−−−→ C[Y ′]

)
⊗C

(
q4C[Xn+1]

0−→ C[Xn+1]]
)

.

As a chain complex over Rn+1, this is homotopy equivalent to the chain complex

CB ⊗ (q3Rn+1
0−→ q−1Rn+1), so

P(ι(B)⊗Bn) = (aq)−1P(B)
q4 − a2q2

1 − q2 = {1}P(B). �

Proposition 5.7.6 ([67]). If B ∈ SBimn, then HH∗(B) is free over Rn.
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Together with Theorem 5.7.5, the proposition says that HH∗(B) can be easily
computed using the MOY rules.

Example 5.7.7. In SBim2, Hom(B1, B1) = HH0(B
2
1). Earlier, we computed that

Tr2(B
2
1) = [2]{0}{1} , so

qdim Hom(B1, B1) =
1 + q2

(1 − q2)2 .

Since qdimRn = (1 − q2)−2, Hom(B1, B1) is free of rank 2 over R2. The identity
map and the map “multiplication by Y1” are a basis for Hom(B1, B1) over R2.

A similar computation shows that Hom(1, B1) ' qR2 ' Hom(B1, 1). We can
describe the generators S : 1 → Bi and S ′ : Bi → 1 explicitly as follows. Identify
1 = Re2/I1 and B1 = Re2/I2, where

I1 = (e1,X1 − Y1) and I2 = (e1, (Y1 −X1)(Y2 −X2))

with e1 = Y1 + Y2 − X1 − X2. Clearly I2 ⊂ I1, and we define S ′ : qB1 → 1 to be
the quotient map. For the other direction, note that (Y1 −X2)I1 ⊂ I2, so there is a
well-defined map S : q1→ B1 given by S(p) = (Y1 −X2)p. Similarly, in SBimn, we
can define morphisms Si : q1 → Bi and S ′i : qBi → 1 by acting on the variables
with index i and i+ 1.

Exercise 5.7.8. Use the above method to compute Hom(Bs, Bs ′), where s, s ′ ∈ S3.
Describe generators for the Hom-spaces, and verify that Theorem 5.6.9 holds in
this case.

5.8. The Rouquier complex We can now describe the HOMFLY-PT analog of the
Khovanov complex of a tangle. Let Kb(SBimn) denote the homotopy category of
bounded complexes over SBimn (not to be confused with the Grothendieck group
K(SBimn).)

Theorem 5.8.1 (Rouquier) [71]). There is a well-defined map C : Brn → Kb(SBimn)
satisfying

C(σi) = q1
Si−→ Bi C(σ−1

i ) = Bi
S ′i−→ q−11

and C(σσ ′) ∼ C(σ)⊗C(σ ′). (The underlined terms in each complex are in homological
grading 0.)

Sketch of proof. The statement of the theorem clearly determines the complex as-
signed to a given braid word. To check that the theorem holds, we must show that
braid words which correspond to the same braid have homotopy equivalent com-
plexes. There are three things to check: C(σi)⊗C(σ−1

i ) ∼ 1, C(σiσj) ∼ C(σjσi)

if |i− j| > 1, and C(σ1σ2σ1) ∼ C(σ2σ1σ2). The first relation corresponds to the
second Reidemeister move, and its proof is entirely analogous to the proof of
Proposition 4.9.3.

The second relation (far commutativity) is easy: if |i− j| > 1, then BiBj = BjBi,
so BiBj ∼ BjBi. The morphism spaces Hom(qBi, BiBj) and Hom(qBj, BiBj)

are one-dimensional, so one easily checks that C(σjσi) ' C(σiσj).
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The proof of the braid relation is more complicated. Using Proposition 5.6.5,
we see that C(σ1σ2σ1) is isomorphic to a complex of the form

q31 −→ q2(B1 ⊕B1 ⊕B2) −→ q(B12 ⊕B21)⊕ (1 + q2)B1 −→ Bw ⊕B1.

cancelling, we see this is homotopy equivalent to a complex

q31 −→ q2(B1 ⊕B2) −→ q(B12 ⊕B21) −→ Bw.

Using exercise 5.7.8, we see that all components of the differential belong to 1-
dimensional morphism spaces. In fact, all possible components of the differential
are nonzero. (This is best proved by using invariance under the second Reide-
meister move to see that C(σ1σ2σ1σ

−1
1 σ−1

2 σ−1
1 ) ∼ 1.)

Finally, the relation d2 = 0 can be used to show that any two complexes of the
form above are isomorphic. Since the form of this complex is completely symmet-
ric under the operation of permuting 1 and 2, it must be homotopy equivalent to
C(σ2σ1σ2) as well. �

The Rouquier complex categorifies the homomorphism Ψ : Brn → Hn. If C is a
chain complex over an additive category C, we define χ(C) =

∑
i(−1)i[Ci] ∈ K(C),

where as usual [Ci] denotes the image of the object [Ci] in the Grothendieck
group K(C).

Proposition 5.8.2. If σ ∈ Brn, χ(C(σ)) = Ψ(σ) ∈ Hn.

Proof. Comparing with equation (5.4.1), we see that χ(C(σ±1
i )) = Ψ(σ±1

i ). Since
χ(C⊗C ′) = χ(C)χ(C ′), the statement holds for all σ. �

Just as with the Khovanov complex of a tangle, positivity of the category SBim
ensures that C(σ) has a unique minimal representative which is well-defined up
to isomorphism.

5.9. HOMFLY-PT homology The Hochschild homology HH∗ is a covariant func-
tor from SBimn to the category of modules over Rn, so HH∗(C(σ)) is a complex of
Rn-modules. Its homology H∗(HH∗(C(σ))) will have three gradings: the homo-
logical gradings on the complex and on Hochschild homology, and the q-grading.
In keeping with our previous notation for the Hochschild homology and the Bar-
Natan complex, we denote a shift in the homological grading by multiplication
by t, and in the Hochschild grading by multiplication by a2.

Definition 5.9.1. If σ ∈ Brn, the HOMFLY-PT homology of its closure σ is defined
to be HHH(σ) = t−n+(σ)(aq)−w(σ)H∗(HH∗(C(σ))).

We index the homological gradings so that

HHHi,j(σ) = Hi−n+(σ)(HHj−w(σ)(C(σ))).

Theorem 5.9.2 (Khovanov-Rozansky [40, 44]). HHH is a well-defined link invariant
which categorifies the HOMFLY-PT polynomial, in the sense that∑

i,j

(−1)i(−a2q2)j qdimHHHi,j(L) = P(L).



Jacob Rasmussen 79

Sketch of proof. The relation with the Euler characteristic follows from Proposi-
tion 5.8.2, Theorem 5.7.5, and Definition 5.2.3. To prove that HHH is a link invari-
ant, we must check that it is invariant under the Markov moves. Invariance under
Markov 1) follows from Proposition 5.7.4. For invariance under Markov 2), we
use the computation ofHH(ι(B)) andHH(ι(B)Bn) in the proof of Theorem 5.7.5 to
see that HH(σσ±1

n ) ∼ HH(σ)⊗ (aq)−1C±, where C± are the bicomplexes shown
below, and R = C[Xn+1].

qR q−1R q−1R q−1R

q3R q3R q3R qR

Xn+1 1

1

0 0

Xn+1

0 0

It is easy to see that H∗(C±) ' C. The homology is supported in the right-hand
column of both bicomplexes, which is homological grading 1 for the positive
crossing, but homological grading 0 for the negative one. This is accounted for
by the shift by t−n+(σ) in the definition of HHH. �

Alternate description: Expanding out the chain complex used to compute the
Hochschild homology yields the following alternate description of the HOMFLY-
PT homology. This is the original definition of Khovanov and Rozansky [40].

i j i j

k l k l

Figure 5.9.3. Positive and negative crossings

Suppose D is a planar braid diagram. Let R = R(D) = C[Xe]/(Lc), where e
runs over the edges of D and (Lc) is an ideal generated by one linear relation Lc
for each crossing c. If we let c+ and c− be positive and negative crossings with
edges labeled as in the figure Lc+ = Lc− = Xi + Xj − Xk − Xl. Since the Lc’s are
all linear polynomials, R(D) is isomorphic to a polynomial ring.

We form a bicomplex

C(D) =
⊗
c

C(c),

where the tensor product runs over all crossings of D. The bicomplexes C(c)
associated to the crossings c takes one of two forms, depending on whether c is
positive or negative. Omitting the grading shifts, the diagram below shows the
bicomplexes associated to c+ (left) and c− (right).

R R R R

R R R R

(Xi−Xk)(Xi−Xl) Xi−Xk

Xi−Xk

1 Xi−Xl

(Xi−Xk)(Xi−Xl)

Xi−Xl Xi−Xl
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The maps in the horizontal direction are the Hochschild differentials, and the
maps in the vertical direction correspond to differentials in the cube of resolutions.
Up to an appropriate grading shift, we have

HHH(σ) = H(H(C(D),dh),dv).

In this formulation, we can form a reduced homology HHHr by working over
the ring Rr(D) ⊂ R(D) generated by the differences Xi −Xj. If K is a knot, it can
be shown that HHHr(K) is finite dimensional, and that

HHH(K) = HHHr(K)⊗HHH( ).

5.10. Connections and Further Reading Khovanov’s paper [44] is well worth
reading. Elias and Williamson [21,22] developed a calculus for morphisms in the
Soergel category which led to a proof of the Kazhdan-Lusztig conjectures in all
types. More generally, the Kazhdan-Lusztig basis and the Soergel category paly
a key role in the development of geometric representation theory and relate to
many topics that are both beautiful and attractive to the geometrically inclined.
The books by Humphreys [34] and Bjorner and Brenti [8] are good starting places.

In a different direction, we can consider the relation between HOMFLY-PT
homology and Khovanov homology. The Jones polynomial is obtained from the
HOMFLY-PT polynomial by substituting a = q2. The categorified analog of such
a substitution is a spectral sequence from HHH Kh [68]. In fact there is an entire
family of such spectral sequences, corresponding to substituting a = qn. The
Alexander polynomial is obtained by substituting a = q0, so it is natural to ask
if there is a spectral sequence from HHHr to ĤFK. Indeed Dowlin [18] recently
proved that there is a spectral sequence from Khr to ĤFK, which provides a
(somewhat roundabout) way of constructing one.

The HOMFLY-PT homology of torus knots has many interesting connections to
other areas of geometry and representation theory, including Hilbert schemes of
plane curve singularities [58, 60], Cherednik algebras [14, 27, 29], and the Hilbert
scheme of C2, [28, 59]. Their HHH was finally calculated through some remark-
able work of Elias, Hogancamp and Mellit [20, 32, 53]

6. Λk colored polynomials

Witten [83] famously reformulated the Jones polynomial using quantum field
theory. If Y is a 3-manifold equipped with a principal G-bundle E, the action of
Witten’s theory is given by the Chern-Simons functional on the space of connec-
tions on E. To get knot polynomials, we treat the knots as “Wilson loops” labeled
by representations of G and take the expected value of a function based on the
trace of the representation along the knot. To recover the Jones polynomial, we
take G = SU(2) and color every component with the vector (2-dimensional) repre-
sentation. However Witten’s formulation makes it clear that there are many other
possibilities.
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In mathematical terms, the theory that Witten created can be described as a
relative 2+1 dimensional TQFT. (Indeed, Witten’s work was a principle motivation
for the definition of a TQFT.) Given a simple Lie algebra g, we form a category
whose objects are closed surfaces Σ containing a set of points P which are colored
(i.e. labeled) by representations of g. and whose morphisms are given by pairs
(Y, T) : (Σ0,P0) → (Σ1,P1), where Y : Σ0 → Σ1 is a cobordism and T ⊂ Y is a
colored tangle with ends on P0 and P1. We seek a functor from this category to the
category of vector spaces and linear maps between them. So far, mathematicians
are unable to give a rigorous definition of the path integral used in Witten’s work,
but Reshetikhin and Turaev [69] gave an algebraic construction of the invariants
Witten described. They are now known as the WRT invariants.

Khovanov’s program of categorification aims to upgrade these 2 + 1 dimen-
sional TQFT’s to 2 + 1 + 1 dimensional TQFT’s. So far, most of its successes
have been for polynomial invariants of knots and tangles in S3 in type A (when
g = sln.) We understand this process very well when all the colors are minuscule
representations, i.e. exterior powers of the vector representation. In this situa-
tion, there are many different ways to categorify, and they are more or less all
known to agree. For other colors, there are several different possible categorifi-
cations, not all of which are the same. Outside of type A, very little is known,
and essentially nothing is known about categorifications for knot and tangles in
3-manifolds other than S3. The exception comes from the world of Floer homol-
ogy, where knot Floer homology, which categorifies the Alexander polynomial,
fits into the 3+1 dimensional TQFT provided by Heegaard Floer homology. (For
more information on this topic, see Hom’s lectures in this volume.)

6.1. The yoga of WRT In order to define the WRT invariants, we must specify
another parameter, known as the level. In general, the dependence of the invari-
ants on the level is complicated, but in the case of tangles in B3, it is quite simple.
Instead of working over C, we work over the ring Z[q±1]. To recover the invari-
ants at a particular level, we substitute q = ω, where ω is some root of unity
determined by the level.

We outline the basic properties of the WRT invariants in this setting. Fix a sim-
ple Lie algebra g. We consider the category gTan of g-colored, oriented tangles
in R2 × [0, 1]. The objects of this category are triples of the form X = (Xn, s, V),
where Xn is our preferred set of n points in R2, s ∈ {±}n is an n-tuple of orienta-
tions on these points, and V ∈ (Rep(g))n is an n-tuple of representations labeling
the points of Xn. We divide out by the equivalence relation which allows us to
reverse the orientation si on the point xi at the cost of replacing its label Vi with
the dual representation V∗i .

The morphisms in gTan are oriented, colored tangles T ⊂ R2 × [0, 1]. If T is
such a tangle, then ∂T = ∂0T q ∂1T , where ∂iT ⊂ R2 × i. The points of ∂T inherit
the orientations and colors of the tangle components which they lie on. In this
way, we can view T as an element of Mor(∂0T ,∂1T). Again, we divide out be the



82 Knots, Polynomials, and Categorification

relation which allows us to replace the orientation on a component of T at the
cost of replacing the color with the dual color. As usual, we also divide out by
the action of isotopies on R2 × I which fix R2 × ∂I.

To a pair of objects X and X ′ of gTan, the WRT invariant associates a free
Z[q±1] module WX,X ′ . To a tangle T : X → X ′ it should associate an element
〈T〉g ∈W∂0T ,∂1T , which is well-defined up to multiplication by ±qk. (As with the
Kauffman bracket, this ambiguity can be fixed by considering framed tangles.) If
T : X ′ → X ′′ is another tangle, there should be a composition map

· : WX,X ′ ×WX ′,X ′′ →WX,X ′′

which satisfies

〈TT ′〉g ∼ 〈T〉g · 〈T ′〉g

If X∅ := (X0, ∅, ∅), then WX∅,X∅ = Z[q±1]. If L ⊂ R3 is a closed, oriented, colored
link, then we can view L as a tangle L : X∅ → X∅, so 〈L〉g ∈ Z[q±1]. We have
already seen examples of these invariants. The polynomial PN(L) := P(L)|a=qN

is the WRT invariant corresponding to g = slN in which all components of L are
colored with the vector representation of slN.

Example 6.1.1. Suppose g = sl2 and Xn is Xn, with all points labeled with the
vector representation V . The choice of orientation is irrelevant, since V ' V∗.
In this case, WXn,Xm = Vn,m is the linear space spanned by crossingless planar
tangles (see section 4.3).

If T is a tangle whose components are labeled with the vector representation,
then 〈T〉sl2 is the Kauffman bracket of T .

The dimension of WX,X ′ can be determined from the representation theory of g.
To the object X = (Xn, s, V), we assign

R(X) =
n⊗
i=1

V
si
i ∈ Rep(g),

where V+
i = V and V−

i = V∗. Then

dimZ[q±1] WX,X ′ = dimCHom(R(X),R(X ′)).

If V and V ′ are irreps of g, then

dim(V ,V ′) =

{
1 if V ' V ′

0 if V 6' V ′

Hence this dimension can be computed by decomposing R(X) and R(X ′) into their
irreducible components.

Example 6.1.2. Let g = slN, and let X2 consist of two positively oriented points,
each labeled with V . Then R(X2) = V ⊗ V ' Sym2 V ⊕ Λ2V splits as a sum
of two different irreps, so dim Hom(R(X2),R(X2)) = 2. Hence there must be a
linear relation between 〈 〉slN , 〈 〉slN , and 〈 〉slN . This is the source of the
HOMFLY-PT skein relation.
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Exercise 6.1.3. Let g = sl2, and let V be the vector representation. Show that

dim Hom(V⊗n,V⊗m) =

{
Cn+m/2 if n+m is even

0 if n+m is odd
,

where

Ck =
1

k+ 1

(
2k
k

)
is the kth Catalan number. Compare with Exercise 4.2.2.

Exercise 6.1.4. Let g = slN, whereN > 4. If you know some representation theory,
show that Λ2V ⊗Λ2V has three irreducible summands. More generally, show that
ΛkV ⊗ΛlV has min(k+ 1, l+ 1) irreducible summands when N > k+ l?

6.2. Webs We now discuss the MOY state model, which was introduced by Mu-
rakami, Ohtsuki, and Yamada in [55]. It gives a simple way of constructing the
invariants of the previous section when g = slN and all colors are exterior pow-
ers of the vector representation. It should be viewed as a generalization of the
construction of the Kauffman bracket in section 4.

We start by defining a diagrammatic category W which will play the same
role that the category of planar tangles played in the definition of the Kauffman
bracket. Let Xn = {x1, . . . , xn} be our standard set of n points in R.

Definition 6.2.1. An (n,n ′)–web is an oriented graph embedded in R× I such
that

(1) Γ ∩ (R× 0) = Xn, Γ ∩ (R× 1) = Xn ′ .
(2) Each edge e of Γ is labeled by a non-negative integer k(e).
(3) Xn ∪Xn ′ is the set of univalent vertices of Γ .
(4) The other vertices of Γ are locally modeled on one of the two pictures

shown in the figure below.

k

e1 e2
e1 e2

l

k+ l

k+ l

k l

Figure 6.2.2. Internal vertices of a web

Example 6.2.3. The MOY graphs considered in the previous lecture are webs,
where k(e) = 1 if e is a thin edge, and 2 if e is a thick edge.

If W is an (n,n ′)–web, its restriction to R× 0 determines a triple X = (Xn, s, k)
where si is the induced orientation at xi, and ki = k(ei), where ei is the unique
edge adjacent to xi. The objects of W are such triples, and the morphisms are
webs between them. Composition is given by horizontal stacking, just as in the
category of planar tangles.
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6.3. The MOY bracket A closed web W is a web with no univalent vertices; it can
be viewed as a morphism W : X∅ → X∅. The key construction of [55] is a state
model for evaluating the slN bracket of a closed web.

Definition 6.3.1. Let Γ be a closed web. A slN–state of Γ is a function which
assigns to each edge e of Γ a subset Ae ⊂ {−N+ 1,−N+ 3, . . . ,N− 1} such that

(1) |Ae| = k(e) is the label on e.
(2) At each vertex v of Γ , ⋃

v→e
Ae =

⋃
e→v

Ae.

One side of the equation in condition (2) is a union of two sets, while the other
side is a single set. From the balancing condition on the labels at trivalent vertices,
we see that the two sets appearing in the union must be disjoint.

The definition of a state has a simple physical interpretation. We think of Γ
as being a wiring diagram for a collection of electric cables, where the number
of cables passing through e is exactly k(e). Each cable is labeled by an element
of {−N+ 1,−N+ 3, . . . ,N− 1}; property (2) tells us that no cables are created or
destroyed as we pass through a vertex.

A state σ of Γ determines a resolution Γσ, which is a collection of closed ori-
ented circles in R2. Each circle C is labeled by σC ∈ {−N+ 1,−N+ 3, . . . ,N− 1}.
In the physical model above, the circles are the closed loops formed by individual
cables.

We now define two weights associated to a state σ. The first is

R(σ) =
∑
C∈Γσ

σCrot C

where rot C is the rotation number: +1 if C is counterclockwise, and −1 if C is
clockwise.

To define the second quantity, suppose that v is a vertex of Γ . After rotating the
plane of the paper, v has one of the two forms shown in Figure 6.2.2. We define

w(σ, v) =
∑

a1∈Ae1 ,a2∈Ae2

1
2
s(a1,a2),

where

s(a,b) =

{
1 a > b

−1 a < b
.

The second weight is W(σ) =
∑
v∈Γσ w(σ, v).

Definition 6.3.2. If Γ is a closed web, we define the slN bracket

〈Γ〉N =
∑
σ

qW(σ)+R(σ)

where the sum runs over all slN–states of Γ .
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Exercise 6.3.3. Show that if Γ is a single circle labeled by k, 〈Γ〉N =
[
N
k

]
, where[

N
k

]
is the quantum binomial coefficient:[

n

m

]
=

[n]!
[m]![n−m]!

and [n]! = [1][2] · · · [n].

Proposition 6.3.4 ( [55]). The MOY bracket satisfies the following relations:

j k l

=

j k l

k

l =
[
N−k
l

]
k l =

[
k+l
l

]

k l

r

s

k l

r− t

s− t

=
∑
t

[
l+ s− k− r

t

]

As an example, we prove the right-hand relation in the middle row, which is a
generalization of the the MOY 2) move. Let Γk,l and Γ be the graphs on the left
and right-hand sides of the equation. We prove the statement by induction on l.
For the base case, take l = 1. Let e be the edge of Γ shown in the figure and let
e1, e2 bet the edges of Γk,l labeled k and l. A state σ ′ of Γ ′ is specified by a state
σ of Γ together with an element ae2 ∈ Ae. We have W(σ ′) =W(σ) +n− (k−n),
where n is the number of elements of the set {a ∈ Ae |a < ae2 }. Since R(σ ′) =

R(σ), it follows that 〈Γk,1〉N = [k]〈Γ〉N.
For the general case, consider the two webs Γk,1,l and Γ̂k,1,l shown below.

k 1 l

Γk,1,l

= k 1 l

Γ̂k,1,l

Using the MOY relation in the top row above, we see that 〈Γk,1,l〉N = 〈Γ̂k,1,l〉N.
Next, we use the relation for l = 1 to see that

[k+ 1]〈Γk+1,l〉N = 〈Γk,1,l〉N = 〈Γ̂k,1,l〉N = [l+ 1]〈Γk,l+1〉N.
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By the induction hypothesis, we see that

〈Γk,l+1〉N =
[k+ 1]
[l+ 1]

〈Γk+1,l〉N =
[k+ 1]
[l+ 1]

[
k+ l+ 1

l

]
〈Γ〉N =

[
k+ l+ 1
l+ 1

]
〈Γ〉N.

The relations of Proposition 6.3.4 are generalizations of the MOY relations used
in section 5. Note that the coefficients that appear can all be expressed as rational
functions of a := qN and q. For example[

N

k

]
=

{0}{1} · · · {k− 1}
[1][2] . . . [k]

.

This can be used to prove that as N varies, the polynomials 〈Γ〉N are all special-
izations of a rational function of a and q.

Proposition 6.3.5 ( [84]). If Γ is a closed web, there is a rational function 〈Γ〉 ∈
Z[a±1](q) such that 〈Γ〉N = 〈Γ〉|a=qN for all N > 0.

6.4. The web category For motivation, we return to the Kauffman bracket. As-
sociated to the objects Xn,Xm, we had a vector space Vn,m generated by simple
planar tangles. As in exercise 4.4.3, we can view Vn,m = HomP(Xn,Xm), where
P is the quotient of the category of planar tangles up to isotopy by the ideal
generated by the local relation = (q+ q−1).

We would like to do something similar with the category W to obtain a cate-
gory Web for which Hom(X, X ′) is a finitely generated R-module. One approach
might be to try to take the quotient of Add(W)⊗ R by the ideal generated by
the MOY relations. A more elegant method is to use the following universal
construction, which is due to Blanchet, Habegger, Masbaum, and Vogel [9].

W1

W
op
2

Let W̃X,X ′ := HomAdd(W)⊗R(X, X ′) be the free R-module generated by all webs
W : X→ X ′. We define a pairing (·, ·) : W̃X,X ′ × W̃X,X ′ → R by

(W1,W2) = 〈W1W
op
2 〉

where W1W
op
2 is the closed web shown in the figure above, and extending lin-

early to W̃. Let

IX,X ′ = {W ∈ W̃X,X ′ | (W,W ′) = 0 for all W ′ ∈ W̃X,X ′ }.

Lemma 6.4.1. The IX,X ′ form an ideal I in Add(W)⊗ R.

Proof. From the figure, we see that (W1W2,W3) = (W1,W3W
r
2 ). IfW1 ∈ IX,X ′ , and

W2 : X ′ → X ′′, then (W1W2,W3) = (W1,W3W
r
2 ) = 0, so W1W2 ∈ IX,X ′ . A similar

argument shows that I is also a right ideal. �



Jacob Rasmussen 87

Definition 6.4.2. Web = W⊗ R/I.

Let X(k, l) be the object consisting of two positively oriented points with colors
k and l respectively, and let W(k, l) = HomWeb(X(k, l), X(k, l)).

Proposition 6.4.3. dim W(k, l) = min(k+ 1, l+ 1).

6.5. TheΛk colored HOMFLY-PT polynomial We defined the Kauffman bracket
for tangles by assigning to a tangle diagram D : Xn → Xm its bracket 〈D〉 ∈ Vn,m.
Similarly, a colored oriented tangle diagram D : X → X ′ should determine an
element 〈D〉 ∈WX,X ′ .

As we did with the Jones polynomial, we start with the diagram of a single
crossing. Let

k,l be the diagram of a positive crossing, where the overstrand
is labeled by k, and the understrand is labeled by l. Similarly, let

k,l be the
diagram of a negative crossing where the understrand is labeled by k and the
overstrand is labeled by l.

We should have 〈
k,l〉 ∈ W(k, l). By Proposition 6.4.3, we know this space

has dimension min(k+ 1, l+ 1). Our first task is to write down a nice basis for
this space.

k

l

l

k

h

k

l

l

k

h

Figure 6.5.1. Basis webs for W(k, l)

If k > l > h > 0, let Wk,l;h be the open web shown in the figure to the left;
while if l > k > h > 0, let W ′k,l;h be the open web shown in the figure to the
right.

Definition 6.5.2. If k > l, we define

〈
k,l〉 =

l∑
h=0

(−q)h−l〈Wk,l;h〉 〈
k,l〉 =

l∑
h=0

(−q)l−h〈Wk,l;h〉

Similarly, if k 6 l, we define

〈
k,l〉 =

k∑
h=0

(−q)h−k〈W ′k,l;h〉 〈
k,l〉 =

k∑
h=0

(−q)k−h〈W ′k,l;h〉

In the case where k = l = 1, these relations reduce to the previously known
ones for the HOMFLY-PT polynomial:

〈 〉 = q〈 〉− 〈 〉 and 〈 〉 = q−1〈 〉− 〈 〉.
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Exercise 6.5.3. If k = l, use MOY relations to show that the two definitions are
equal.

If D : X → X ′ is a colored oriented tangle diagram Definition 6.5.2 expresses
〈D〉 as a sum of webs. The MOY bracket 〈D〉 is the image of this sum in WX,X ′ .
Just like the Kauffman bracket, the MOY bracket is invariant under Reidmeister
moves 2) and 3), but not Reidemeister 1).

If D is a colored link diagram, we define w(D) =
∑
i kiw(Li), where the sum

runs over the components Li of D.

Theorem 6.5.4 ([55]). If D and D ′ are related by a Reidemeister move, then we have
a−kw(D)〈D〉 = a−kw(D ′)〈D ′〉.

Exercise 6.5.5. Check that the theorem holds for the Reidemeister 1) move.

Definition 6.5.6. If L is an integer-colored link, P(L) := a−kw(D)〈D〉 ∈ Z[a±1](q)

is the unnormalized Λ-colored HOMFLY-PT polynomial of L.

When all ki = 1 P(L) is the HOMFLY-PT polynomial as defined in the previous
section. P(L)|a=qN is the WRT invariant of L associated to the Lie algebra slN,
where each component of L is colored by the representation ΛkiV . If K is a knot
with color k, we write P(K) = PΛk(K). In this case, we can define the normalized
polynomial

PΛ
k
(K) =

P
Λk

(K)

P
Λk

( )
,

and PΛ
k
(K) ∈ Z[q±1,q±1].

6.6. Categorification Having defined theΛk-colored slN polynomials, we briefly
discuss the problem of categorifying them. Again, we seek to imitate the construc-
tions of section 4. The first step is to find the analog of the 2-category Cob.

Definition 6.6.1. A pre-foam is a 2-dimensional finite cell complex F embedded in
R× I× I together with a labeling of every two-dimensional face f by an orien-
tation, a non-negative integer k(f), and a polynomial p(f), which is a symmetric
polynomial in k(f) variables. F should satisfy the following conditions:

(1) F∩R× I× 0 =W0 : X→ X ′ and F∩R× I× 1 =W1 : X→ X ′ are webs.
(2) F∩R× 0× I = X× I and F∩R× 1× I = X ′ × I
(3) In the interior of R× I× I, F is locally modeled on the following pictures:

(a) A plane labeled by j ∈N.
(b) Y× I, where Y is a trivalent vertex with edges labeled by j,k and j+k.
(c) The cone on the 1-skeleton of a tetrahedron, with the six edges la-

beled by j,k, l, j+ k, j+ l, j+ k+ l.

The polynomial p(f) fills the role of the “dots” in Cob. There is a 2-category
PFoam of pre-foams, in which the objects are colored oriented points X, in which
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the 1-morphisms are webs W : X → X ′, and in which the 2-morphisms are pre-
foams F :W0 →W1. Compositions are given by horizontal and vertical stacking.

In PFoam, there are foams F+ :Wk,l,h →Wk,l,h+1 and F− :Wk,l,h →Wk,l,h−1.
The foam F+ is illustrated by the movie in the figure below. To get the foam
F−, we run the movie in reverse. Reflecting across a vertical line gives foams
F ′+ :W ′k,l,h →W ′k,l,h+1 and F ′− :W ′k,l,h →W ′k,l,h−1.

Definition 6.6.2. If g > l, the Rickard complex associated to the crossing
k,l

(k > l) is

〈
k,l〉 = q

lWk,l;0
F+−−→ q(l−1)Wk,l;1

F+−−→ . . .
F+−−→Wk,l;l.

There are similar formulas for the other configurations of crossings.
Note that the Rickard complex is not actually a complex in PFoam; there is no

reason that d2 = 0. To make it into one, we must pass to a new category Foam,
which is a quotient of PFoam — just as we passed from Cob to Bar-Natan’s
category. The resulting category should also have enough relations to ensure that
the MOY relations categorify to isomorphisms, in the same way that we were
able to prove ' (1 + q−1) in CBN. A careful list of local relations which must
hold in Foam may be found in [65]. There are many ways to construct such a
category: using matrix factorizations [45], [84], representation theory [51], [78],
derived categories of sheaves [13], or categorified quantum groups [65]. Perhaps
the simplest construction is due to Robert and Wagner [70]. They define a state
sum formula for evaluating a closed foam, analogous to the MOY state sum
formula for evaluating a closed web, and show that it satisfies the relations in [65].
The quotient category Foam can then be constructed using the BHMV method [9],
just as we constructed Web from PWeb.
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6.7. Connections and Further Reading Just as the reduced slN homologies of
a knot limit to its reduced HOMFLY-PT homology as N → ∞, the reduced Λk

colored homologies limit to a well-defined Λk-colored HOMFLY-PT homology
HΛ

k
(K). There are many conjectures in the physics literature about the struc-

ture of these invariants. We mention two of the most interesting. The first is
the exponential growth conjecture of Gukov and Stosic [31], which states that
dimHΛ

k
(K) > dim(HHHr(K))k. This was proved by Wedrich [81], who studied

deformations and differentials on the Λk colored homology. The second is the
knots-quivers correspondence [49]. This remarkable conjecture states that all the
polynomials PΛ

k
(K) can be recovered from a finite amount of data, in the form

of a vector space equipped with a quadratic form and two linear forms. The
conjecture is known to hold for all arborescent knots [76].

In a different direction, we could consider categorifying the WRT invariants for
arbitrary colors in type A. A standard method for defining the WRT invariants is
via Jones-Wenzl projectors. A Jones-Wenzl projector is a central idempotent in the
Hecke algebra Hn; the set of such idempotents is naturally in bijection with the
set of partitions of n. As is well-known, any such partition λ determines a repre-
sentation Vλ of slN. If L is a link whose components Li are labeled by partitions
λi, we form a new link L̂ by taking the |λi|-strand cable of each Li and “inserting
the projector” eλi into it. (More precisely, we take a braid representative of L̂,
look at its image in the Hecke algebra, and insert a factor of eλi into each clutch
of |λi| strands.) The trace of the resulting Hecke algebra element is the ~λ colored
HOMFLY-PT polynomial of L.

A beautiful theorem of Rozansky [72] says that if we take an approriate limit of
CKh(T(n,m)) as m → ∞, the result is a categorification of the Jones-Wenzl pro-
jector in TLn which corresponds to the representation Symn(V). Similar categori-
fied projectors exist in the Soergel category and were studied by Hogancamp [33]
and Abel-Hogancamp [1], who computed the stable HOMFLY-PT homology of
the torus knots, as first conjectured in [19]. They can be used to define colored
versions of the HOMFLY-PT homology but be careful: using this approach to de-
fine a Λk colored homology group results in an invariant which is different from
those described above.
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